TiO2 Based Nanocomposite for Photocatalytic Degradation of Organic Pollutants


TiO2 Based Nanocomposite for Photocatalytic Degradation of Organic Pollutants

D. Sud, N. Sharotri

Organic contaminants such as synthetic dyes, phenols, pesticides, fertilizers, herbicides, and surfactants, etc. present in aqueous streams are of foremost concern with respect to the health of the general public. Titania based heterogeneous photocatalytic oxidation has received the attention of researchers for many years as an alternative method for purification of both air and water systems. The major issues of immense importance from industrial viewpoint have been the recovery and recycling of the photocatalyst. The present chapter discusses the utility of TiO2 based nanocomposite materials in photocatalytic degradation of organic pollutants.

Nanocomposites, Titania, Photocatalysis, Organic Pollutants, Wastewater

Published online 4/1/2018, 21 pages

DOI: http://dx.doi.org/10.21741/9781945291630-10

Part of Organic Pollutants in Wastewater I

[1] C.D.S. Tomlin, (Ed.), The pesticide manual (15th Ed.). Hampshire, Eng- land: BCPC (2009).
[2] M.W. Luckenbach, P.D. Fur, M.L. Kellogg, P.V. Veld, Potential effects of endocrine disrupting compounds on bivalve populations in Chesapeake Bay: A review of current knowledge and assessment of research needs, Chesapeake Research Consortium CRC Publication No. 10-170 Edgewater, MD. (2009).
[3] C.M. Browner, J.C. Fox, S. Frace, M.B. Rubin, F. Hund, Development document for final effluent limitations guidelines and standards for the pharmaceutical manufacturing point source category, EPA 821-B-98-009; Engineering and Analysis Division, U.S. Environ-mental Protection Agency (EPA): Washington, DC, USA. (1998).
[4] H.D. Mansilla, M.C. Yeber, J. Freer, J. Rodriguez, J. Baeza, Homogeneous and heterogeneous advanced oxidation of a bleaching effluent from the pulp and paper industry, J. Water Sci. Technol. 35 (1997) 273-278.
[5] G. Alhakimi, S. Gebril, L.H. Studnicki, Comparative photocatalytic degradation using natural and artificial UV-light of 4-chlorophenol as a representative compound in refinery wastewater, J. Photochem. Photobiol. A: Chem. 157 (2003) 103-109. https://doi.org/10.1016/S1010-6030(03)00038-8
[6] M. Noorjahan, M.P. Reddy, V.D. Kumari, B. Lavedrine, P. Boule, M. Subrhamanyam, Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions, J. Photochem. Photobiol. A: Chem. 156 (2003) 179-187. https://doi.org/10.1016/S1010-6030(02)00408-2
[7] I.M. Arabatizis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantiou, M.C. Bernard P. Falaras, Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation, J. Photochem. Photobiol. A: Chem. 149 (2002) 237-245. https://doi.org/10.1016/S1010-6030(01)00645-1
[8] F. Kiriakidou, D.I. Kondarides, X.E. Verykios, The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes, Catal. Today 54 (1999) 119-130. https://doi.org/10.1016/S0920-5861(99)00174-1
[9] B. Sun, and P.G. Smirniotis, Interaction of anatase and rutile TiO2 particles in aqueous photooxidation, Catal. Today 88 (2003) 49-59. https://doi.org/10.1016/j.cattod.2003.08.006
[10] K. Namura, Minerals. Crystal structure gallery. Available Source: http://staff.aist.go.jp/nomura-k/english/itscgallary-e.htm. (2002).
[11] Y. Hu, H. L. Tsai, C.L. Huang, Effect of brookite phase on the anatase-rutile transition in titania nanoparticles, Eur. Ceram. Soc. 23 (2003) 691-696. https://doi.org/10.1016/S0955-2219(02)00194-2
[12] D. Nicholls, Complexes and First-Row Transition Elements; MacMillan Education: Hong Kong (1974). https://doi.org/10.1007/978-1-349-02335-6
[13] Y. Shao, D. Tang, J. Sun, Y. Lee, W. Xiong, Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by a sol-gel technique. China Part. 2 (2004) 119.
[14] J. Fisher, T.A. Egerton, Titanium compounds, inorganic, Kirk-Othmerencyclopaedia of chemical technology. Wiley, New York (2001).
[15] K. Madhusudan Reddy, S.V. Manorama, A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys. 78 (2003) 239. https://doi.org/10.1016/S0254-0584(02)00343-7
[16] N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts, J. Phys. Chem. B. 110 (2006) 24287. https://doi.org/10.1021/jp065659r
[17] N. Daude, C. Gout, Electronic band structure of titanium dioxide, J. Phys. Rev. B. 15 (1977) 3229-3235. https://doi.org/10.1103/PhysRevB.15.3229
[18] G. Peters, V. Vill, Index of modern inorganic compounds. Subvolume A. Landolt-Bo ̈rnstein numerical data and functional relationships in science and technology, Verlag, Berlin (1989).
[19] J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc. 109 (1987) 3639-3646. https://doi.org/10.1021/ja00246a021
[20] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33–117. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
[21] J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today 53 (1999) 115–129. https://doi.org/10.1016/S0920-5861(99)00107-8
[22] N. Serpone, Brief introductory remarks on heterogeneous photocatalysis, Sol. Energy Mater. Sol. Cells. 38 (1995) 369-379. https://doi.org/10.1016/0927-0248(94)00230-4
[23] D.W. Bahnemann, Mechanisms of organic transformations on semiconductor particles, in: Pelizzetti, E.; Schiavello, M. (Eds.), Photochemical Conversion and Storage of Solar Energy; Kluwer Academic Publishers; The Netherlands. 251–276. (1991). https://doi.org/10.1007/978-94-011-3396-8_15
[24] P. Suppan, Chemistry and Light. Royal Society of Chemistry: Cambridge, 107. (1994).
[25] A. Hoffman, E.R. Carraway, M. Hoffman, Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids, Environ. Sci. Technol. 28 (1994) 776-785. https://doi.org/10.1021/es00054a006
[26] F. Mahdavi, T.C. Burton, Y. Li, Photoinduced reduction of nitro compounds on semiconductor particles, J. Org. Chem. 58 (1993) 744-746. https://doi.org/10.1021/jo00055a033
[27] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. B 98 (1994) 13669–13679. https://doi.org/10.1021/j100102a038
[28] K. Vinodgopal, P.V. Kamat, Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films, Environ. Sci. Technol. 29 (1995) 841-845. https://doi.org/10.1021/es00003a037
[29] P. Kaur, D. Sud, Photocatalytic degradation of quinalphos in aqueous TiO2 suspension: Reaction pathway and identification of intermediates by GC/MS, J. Mole. Catal. A: Chem. 362 (2012) 32-38. https://doi.org/10.1016/j.molcata.2012.08.005
[30] Z. Xu, J. Shang, C. Liu, C. Kang, H. Guo, Y. Du, The preparation and characterization of TiO2 ultrafine particles, Mater. Sci. Eng. B. 63 (1999) 211–214. https://doi.org/10.1016/S0921-5107(99)00084-7
[31] Y. Li, D.S. Hwang, N.H. Lee, S.J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett. 404 (2005) 25-29. https://doi.org/10.1016/j.cplett.2005.01.062
[32] L.B. Reutergarth, M. Iangpashuk, Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere 35 (1997) 585–596. https://doi.org/10.1016/S0045-6535(97)00122-7
[33] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 77 (2003) 65-82. https://doi.org/10.1016/S0927-0248(02)00255-6
[34] S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater. 170 (2009) 560–569. https://doi.org/10.1016/j.jhazmat.2009.05.064
[35] D. Li, and H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition, J. Photochem. Photobiol. A: Chem. 155 (2003) 171–178. https://doi.org/10.1016/S1010-6030(02)00371-4
[36] P. Wu, R. Xie, K.J. Shang, Enhanced visible-light photocatalytic disinfection of bacterial spores by palladium-modified nitrogen-doped titanium oxide, J. Am. Ceram. Soc. 91 (2008) 2957–2962. https://doi.org/10.1111/j.1551-2916.2008.02573.x
[37] J.A. Cha, S.H. An, H.D. Jang, C.S. Kim, D.K. Song, T.O. Kim, Synthesis and photocatalytic activity of N-doped TiO2/ZrO2 visible-light photocatalysts. Adv. Powder Technol. 23 (2011) 717–723. https://doi.org/10.1016/j.apt.2011.09.003
[38] Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, J. Phys. Chem. C 111 (2007) 6976–6982. https://doi.org/10.1021/jp0685030
[39] S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chinese Sci. Bull. 56 (2011) 1639-1657. https://doi.org/10.1007/s11434-011-4476-1
[40] M. Young-E, J. Gowun, Y. Jumi, K. Hyung, Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants, Mater. Sci. Eng. B 178 (2013) 1097–1103. https://doi.org/10.1016/j.mseb.2013.07.002
[41] Y. Jumi, I.J. Sun, O. Aeri, J. Dong-Hwee, B. Tae-Sung, L. Young-Seak, K. Hyung, pH-sensitive photocatalytic activities of TiO2/poly(vinyl alcohol)/poly(acrylic acid) composite hydrogels, Mater. Sci. Eng. B 176 (2011) 276–281. https://doi.org/10.1016/j.mseb.2010.11.011
[42] L. Marija, M. Nedeljko, R. Maja, Š. Zoran, R. Marija, K.M. Kalagasidis, The potential application of TiO2/hydrogel nanocomposite for removal of various textile azo dyes, Sep. Purif. Technol. 122 (2014) 206–216. https://doi.org/10.1016/j.seppur.2013.11.002
[43] N.K. Boutoumi, H. Boutoumi, H. Khalaf, D. Bernard, Synthesis and characterization of TiO2–montmorillonite/polythiophene-SDS nanocomposites: Application in the sonophotocatalytic degradation of rhodamine 6G, Appl. Clay Sci. 80–81 (2013) 56–62. https://doi.org/10.1016/j.clay.2013.06.005
[44] V. Belessi, D. Lambropoulou, I. Konstantinou, A. Katsoulidis, P. Pomonis, D. Petridis, T. Albanis, Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor, Appl. Catal. B: Environ. 73 (2007) 292–299. https://doi.org/10.1016/j.apcatb.2006.12.011
[45] R. Kun, K. Mogyorósi, I. Dékány, Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites, Appl. Clay Sci. 32 (2006) 99–110. https://doi.org/10.1016/j.clay.2005.09.007
[46] L. Hongfei, J. Shengfu, Z. Yuanyuan, L. Mingand, Y. Hao, Porous TiO2-coated magnetic core-shell nanocomposites: Preparation and enhanced photocatalytic activity, Chinese J. Chem. Eng. 21 (2013) 569-576. https://doi.org/10.1016/S1004-9541(13)60521-2
[47] D. Xia, M.C. Irene, Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation, Water Res. 100 (2016) 393-404. https://doi.org/10.1016/j.watres.2016.05.026
[48] Y. Wang, Z. Xing, Z. Li, X. Wu, G. Wang, W. Zhou, Facile synthesis of high-thermostably ordered mesoporous TiO2/SiO2 nanocomposites: An effective bifunctional candidate for removing arsenic contaminations, J. Coll. Interface Sci. 485 (2017) 32–38. https://doi.org/10.1016/j.jcis.2016.09.022
[49] P. Kaur, P. Bansal, D. Sud, Heterostructured nanophotocatalysts for degradation of organophosphate pesticides from aqueous streams, J. Korean Chem. Soc. 37 (2013) 382-388. https://doi.org/10.5012/jkcs.2013.57.3.382
[50] A.A. Ismail, I. Abdelfattah, A. Helal, S.A. Al-Sayari, L. Robben, D.W. Bahnemann, Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination, J. Hazard. Mater. 307 (2016) 43–54. https://doi.org/10.1016/j.jhazmat.2015.12.041
[51] V.K. Gupta, T. Eren, N. Atar, M.L. Yola, C. Parlak, H.K. Maleh, CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos, J. Mol. Liq. 208 (2015) 122–129. https://doi.org/10.1016/j.molliq.2015.04.032
[52] D. Sud, A. Syal, Investigations on phase transformation, optical characteristics and photocatalytic activity of synthesized heterostructurednanoporous Bi2O3-TiO2, 63 (2016) 776–783.
[53] L. Zhang, C. Ni, H. Jiu, C. Xie, J. Yan, G. Qi, One-pot synthesis of Ag-TiO2/reduced graphene oxide nanocomposite for high performance of adsorption and photocatalysis, Ceram. Int. 43 (2017) 5450–5456. https://doi.org/10.1016/j.ceramint.2017.01.041
[54] M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomirouzbahani, In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue, Ceram. Int. 42 (2016) 8587–8596. https://doi.org/10.1016/j.ceramint.2016.02.088