Green Applications of Magnetic Sorbents for Environmental Remediation

$20.00

Green Applications of Magnetic Sorbents for Environmental Remediation

Tiyasha Kanjilal, Chiranjib Bhattacharjee

Adsorption of both inorganic and organic xenobiotics by utilizing a variety of biomaterials signifies promising prospects for the reduction of environmental pollution. For the purpose of improveing manipulation of the biosorbents, their potential magnetic derivatives have been investigated. These diamagnetic biomaterials of different origin (lignocellulosic material, prokaryotic and eukaryotic cells, food wastes, biopolymers etc.) can be magnetically modified in order to acquiring ‘smart’ biomaterial exhibiting a definite response to the external magnetic field. This chapter summarizes the synthesis procedures of magnetic modification and eco-friendly applications of these ‘smart’ biomaterials both in nano and micro-sized forms.

Keywords
Magnetic Separation, Magnetic Modification, Sorbents, Biomaterials, Carriers, Biocatalysts

Published online 4/1/2018, 41 pages

DOI: http://dx.doi.org/10.21741/9781945291630-1

Part of Organic Pollutants in Wastewater I

References
[1] V. Rocher, J.M. Siaugue, V.Cabuil, A. Bee, Removal of organic dyes by magnetic alginate beads, Water Res. 42 (2008) 1290-1298. https://doi.org/10.1016/j.watres.2007.09.024
[2] H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads, Bioresource Technol. 99 (2008) 6271-6279. https://doi.org/10.1016/j.biortech.2007.12.002
[3] J. Zhu, S. Wei, M. Chen, H. Gu, S.B. Rapole, S. Pallavkar, T.C. Ho, J. Happer, Z. Guo, Magnetic nanocomposites for environmental remediation, Adv. Pow. Technol. 24 (2013) 459-467. https://doi.org/10.1016/j.apt.2012.10.012
[4] Z. Zhang, S. Xia, A.Yang, B. Xu, L. Chen, Z. Zhu, J. Zhao, J.R. Jaffrezic, D. Leonard, A novel biosorbent for dye removal: extracellular polymeric substances (EPS) of Proteus mirabilis TJ-1, J.Hazard. Mater. 15 (2009) 279-284. https://doi.org/10.1016/j.jhazmat.2008.06.096
[5] C.H. Niu, B. Volesky, D. Cleiman, Biosorption of arsenic(V) with acid-washed crab scheels, Water Res. 42 (2007) 2473-2478. https://doi.org/10.1016/j.watres.2007.03.013
[6] D.M. Hamby, Site remediation techniques supporting environmental restoration activities-a review, Sci. Total Environ. 191 (1996) 203-224. https://doi.org/10.1016/S0048-9697(96)05264-3
[7] R.J. Watts, Hazardous wastes: sources, pathways and receptors, John Wiley and Sons, Inc., 1997.
[8] T. Kanjilal, S. Babu, K. Biswas, C. Bhattacharjee, S. Datta, Application of mango seeds integument as bio-adsorbent in lead removal from industrial effluent, Des. Water Treat. 56 (2015) 984-996. https://doi.org/10.1080/19443994.2014.950999
[9] Q.L. Lu, G.A. Sorial, Adsorption of phenolics on activated carbon, impact of pore size and molecular oxygen, Chemosphere 55 (2004) 671-679. https://doi.org/10.1016/j.chemosphere.2003.11.044
[10] Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen, Adsorption of Pb (II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: adsorption capacity, kinetic and isotherm studies, Appl. Surface Sci. 293 (2014) 160-168. https://doi.org/10.1016/j.apsusc.2013.12.123
[11] R.V. Siriwardane, M.S. Shen, E.P. Fischer, Adsorption of CO2 on zeolites at moderate temperatures, Energy Fuels 19 (2005) 1153-1159. https://doi.org/10.1021/ef040059h
[12] M.A. Hernandez, L.Corona, A.I. Gonzalez, F. Rojas, V.H. Lara, F. Silva, Quantitative study of the adsorption of aromatic hydrocarbons (benzene, toluene and p-xylene) on dealuminated elinoptilolites, Ind. Eng. Chem. Res. 44 (2005) 2908-2916. https://doi.org/10.1021/ie049276w
[13] B.H. Gu, J. Schmitt, Z.Chen, L.Y. Liang, J.F. McCarthy, Adsorption and desorption of different organic matter fractions on iron oxide, Geochim. Cosmochim. Acta 59 (1995) 219-229. https://doi.org/10.1016/0016-7037(94)00282-Q
[14] C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L.L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, V. L. Colvin, Low field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314 (2006) 964-967. https://doi.org/10.1126/science.1131475
[15] L.A. Belyakova, N.N. Vlasova, L.P. Golovkova, A.M. Varvarin, D.Y. Lyashenko, A.A. Svezhentsova, N.G. Stukalina, A.A. Chuiko, Role of surface nature of functional silicas in adsorption of monocarboxylic and bile acids, J. Colloid Inter Sci. 258 (2003) 1-9. https://doi.org/10.1016/S0021-9797(02)00093-0
[16] R.S. Bai, T.E. Abraham, Studies on Chromium(VI) adsorption-desorption using immobilized fungal biomass, Bioresource Technol. 87 (2003) 17-26. https://doi.org/10.1016/S0960-8524(02)00222-5
[17] J.Z. Chen, X.C. Tao, J. Xu, T. Zhang, Z. L. Liu, Biosorption of lead, chromium and mercury by immobilized Microcystis aeruginosa in a column, Proc. Biochem. 40 (2005) 3675-3679. https://doi.org/10.1016/j.procbio.2005.03.066
[18] K.K. Nur, N.L. Jeppe, Y. Meral, D. Gonul, Characterization of a bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI), Chemosphere 67 (2007) 826-831. https://doi.org/10.1016/j.chemosphere.2006.08.041
[19] S.A. Sarabjeet, G. Dinesh, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresource Technol. 98 (2007) 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006
[20] Y. Zhang, B. Charles, Factors affecting the removal of selected heavy metals using a polymer immobilized Sphagnum moss as a biosorbents, Environ. Technol. 26 (2005) 733-743. https://doi.org/10.1080/09593332608618515
[21] J. Hu, G.H. Chen, M.C.L. Irene, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res. 39 (2005) 4528-4536. https://doi.org/10.1016/j.watres.2005.05.051
[22] G. Giakisikli, A.N. Anthemidis, Magnetic materials as sorbents for metal /metalloid preconcentration and/or separation: A review, Analyte. Chim. Acta 789 (2013) 1-16. https://doi.org/10.1016/j.aca.2013.04.021
[23] P. Wikstrom, S. Flygare, A. Grondalen, P.O. Larsson, Magnetic aqueous two-phase separation: A new technique to increase rate of phase-separation, using dextran-ferrofluid or larger iron-oxide particles. Anal. Biochem. 167 (1987) 331-339. https://doi.org/10.1016/0003-2697(87)90173-4
[24] P.H. Towler, J.D. Smith, D.R. Dixon, Magnetic recovery of radium, lead, and polonium from sea water samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetite, Anal. Chim. Acta 328 (1996) 53-59. https://doi.org/10.1016/0003-2670(96)00080-3
[25] M. Safarikova, I. Safarik, Magnetic solid phase extraction, J. Magn. Magn. Mater. 194 (1999) 108-112. https://doi.org/10.1016/S0304-8853(98)00566-6
[26] X.S. Li, G.T. Zhu, Y.B. Luo, B.F. Yuan, Y.Q. Feng, Synthesis and applications of functionalized magnetic materials in sample preparation, Trends Anal. Chem. 45 (2013) 233-247. https://doi.org/10.1016/j.trac.2012.10.015
[27] K. Aguilar-Arteaga, J.A. Rodriguez, E. Barrado, Magnetic solids in analytical chemistry: A review, Anal. Chim. Acta 674 (2010) 157-165. https://doi.org/10.1016/j.aca.2010.06.043
[28] T.A. Rangreez, Inamuddin, A.M. Asiri, B.G. Alhogbi, M. Naushad, Synthesis and ion-exchange properties of graphene th(IV) phosphate composite cation exchanger: Its applications in the selective separation of lead metal ions, Int. J. Environ. Res. Public Health. 14 (2017) 828. https://doi.org/10.3390/ijerph14070828
[29] A. Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172–1184. https://doi.org/10.1016/j.ijbiomac.2017.06.116
[30] Y.H. Zhal, S. Duan, Q. He, X.H. Yang, Q. Han, Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5- diphenylcarbazide, Microchim. Acta 169 (2010) 353-360. https://doi.org/10.1007/s00604-010-0363-8
[31] H. Mei-Jiang, Z. Peng-Yan, Y. Zhao, X. Hu, H. Zhen-Lian, Zincon immobilized silica coated magnetic Fe3O4 nanoparticles for solid phase extraction and determination of trace lead in natural and drinking waters by graphite furnace atomic absorption spectrometry, Talanta 94 (2012) 251-256. https://doi.org/10.1016/j.talanta.2012.03.035
[32] A.E. Karatapanis, Y. Fiamegos, C.D. Stalikas, Silica modified magnetic nanoparticles functionalized with cetyl pyridinium bromide for the pre concentration of metals after complexation with 8-hydroxyquinoline, Talanta 84 (2011) 834-839. https://doi.org/10.1016/j.talanta.2011.02.013
[33] M. Faraji, Y. Yamini, A. Saleh, M. Rezace, M. Ghambarian, R. Hassani, A nanoparticle based solid phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples, Anal. Chim. Acta 659 (2010) 172-177. https://doi.org/10.1016/j.aca.2009.11.053
[34] Y.F. Huang, Y. Li, Y. Jiang, X.P. Yan, Magnetic immobilization of amine-functionalized magnetic nanoparticles in a knotted reactor for on-line solid phase extraction coupled with ICP-MS for speciation of trace chromium, J. Anal. At. Spectrom. 25 (2010) 1467-1464. https://doi.org/10.1039/c004272b
[35] G. Cheng, M. He, H. Peng, B. Hu, Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES, Talanta 88 (2012) 507-515. https://doi.org/10.1016/j.talanta.2011.11.025
[36] L. Chen, B. Li, Application of magnetic molecularly imprinted polymers in analytical chemistry, Anal. Methods 4 (2012) 2613-2621. https://doi.org/10.1039/c2ay25354b
[37] Y. Wang, X. Luo, J. Tang, X. Hu, Q. Hu, C.Yang, Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab on value system with detection by electro thermal atomic absorption spectrometry, Anal. Chim. Acta 713 (2012) 92-96. https://doi.org/10.1016/j.aca.2011.11.022
[38] G.C. Silva, F.S. Almeida, A.M. Ferreira, V.S.T. Ciminelli, Preparation and application of a magnetic composite (Mn3O4/Fe3O4) for removal of As(III) from aqueous solutions, Mater. Res. 15 (2012) 403-408. https://doi.org/10.1590/S1516-14392012005000041
[39] Y. Ren, N. Li, J. Feng, T. Luan, Q. Wen, Z. Li, M. Zhang, Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4, J. Colloid. Interface Sci. 367 (2012) 415-421. https://doi.org/10.1016/j.jcis.2011.10.022
[40] I. Larraza, M. Lopez-Gonzalez, T. Corrales, G. Marcelo, Hybrid-materials: Magnetite-polyethylenimine-montmorillonite, as magnetic adsorbents for Cr(VI) water treatment, J. Colloid Interface Sci. 385(2012) 24-33. https://doi.org/10.1016/j.jcis.2012.06.050
[41] A. Idris, N.S.M. Ismail, N. Hassan, E. Misran, A.F. Ngomsik, Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution, J. Ind. Eng. Chem. 18 (2012) 1582-1589. https://doi.org/10.1016/j.jiec.2012.02.018
[42] R.D. Ambashta, M. Sillanpaa, Water purification using magnetic assistance: A review, J. Hazard. Mater. 180 (2010) 38-49. https://doi.org/10.1016/j.jhazmat.2010.04.105
[43] Z. Yang, A.G. Langdon, The use of magnetic bed conditioning and pH control to enhance filtration by natural titanomagnetite, Water Res. 38 (2004) 3304-3312. https://doi.org/10.1016/j.watres.2004.04.017
[44] J.H.P. Watson, D.C. Ellwood, Biomagnetic separation and extraction process for heavy metals from solution, Miner. Eng. 7 (1994) 1017-1028. https://doi.org/10.1016/0892-6875(94)90030-2
[45] A.S. Bahaj, P.A.B. James, F.D. Moeschler, Efficiency enhancements through the use of magnetic field gradient in orientation magnetic separation for the removal of pollutants by magnetotactic bacteria, Sep. Sci. Technol. 37 (2002) 3661-3671. https://doi.org/10.1081/SS-120014825
[46] Z.G. Peng, K. Hidayat, M.S. Uddin, Extraction of 2-hydroxyphenol by surfactant coated nano-sized magnetic particles, Korean. J. Chem. Eng. 20 (2003) 896-901. https://doi.org/10.1007/BF02697295
[47] L.C.R. Machado, F.W.J. Lima, R. Paniago, J.D. Ardisson, J. Sapag, R.M. Lago, Polymer coated vermiculite-iron composites: Novel floatable magnetic adsorbents for water spilled contaminants. Appl. Clay. Sci. 31 (2006) 207-215. https://doi.org/10.1016/j.clay.2005.07.004
[48] Y. Hou, J. Yu, S. Gao, Solvothermal reduction synthesis and characterization of super para-magnetic nanoparticles, J. Mater. Chem. 13 (2003) 1983-1987. https://doi.org/10.1039/b305526d
[49] J.C. Lyon, D.A. Fleming, M.B. Stone, P. Schiffer, M.E. Williams, Synthesis of iron oxide ore/Au shell nanoparticles by iterative hydroxylamine seeding, Nano Letters 4 (2004) 719-723. https://doi.org/10.1021/nl035253f
[50] M. Monier, D.M. Ayad, Y. Wei, A.A. Sarhan, Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II) and Ni(II) ions, Reactive Funct. Polym. 70 (2010) 257-266. https://doi.org/10.1016/j.reactfunctpolym.2010.01.002
[51] X. Luo, L. Zhang, High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon, J. Hazard. Mater. 171 (2009) 340-347. https://doi.org/10.1016/j.jhazmat.2009.06.009
[52] P.L. Lee, Y.C. Sun, Y.C. Ling, Magnetic nano-adsorbent integrated with lab on valve system for trace analysis of multiple heavy metals, J. Anal. At. Spectrom. 24 (2009) 320-327. https://doi.org/10.1039/b814164a
[53] H. Huang, Y. Ji, Z. Qiao, C. Zhao, J. He, H. Zhang, Preparation, characterization and application of magnetic Fe-SBA-15 mesoporous silica molecular sieves, J. Antom. Methods Manag. Chem. 2010 1-7.
[54] I. Safarik, K. Pospiskova, K. Horska, M.Safarikova, Potential of magnetically responsive (nano) biocomposites, Soft Matter. 8 (2012) 5407-5413. https://doi.org/10.1039/c2sm06861c
[55] S. Laurent, D. Forge, M. Port, A. Roch, C. Robie, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications, Chem. Rev. 108 (2008) 2064-2110. https://doi.org/10.1021/cr068445e
[56] H. Wei, E. Wang, Fe3O4magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection, Anal. Chem. 80 (2008) 2250-2254. https://doi.org/10.1021/ac702203f
[57] I. Safarik, K. Pospiskova, E. Baldikova, M. Safarikova, Magnetically responsive biological materials and their applications, Adv. Mater. Lett. 7 (2016) 254-261. https://doi.org/10.5185/amlett.2016.6176
[58] M. Safarikova, I. Safarik, The applications of magnetic techniques in biosciences, Mag. Elect. Sep. 10 (2000) 223-252. https://doi.org/10.1155/2001/57434
[59] M. Safarikova, Z. Maderova, I. Safarik, Ferrofluid modified Saccharomyces cerevisae cells for biocatalysis, Food Res. Int. 42 (2009) 521-524. https://doi.org/10.1016/j.foodres.2009.01.001
[60] I. Safarik, K. Horska, K. Pospiskova, M.Safarikova, One step preparation of magnetically responsive materials from non-magnetic powders, Pow. Technol. 229 (2012) 285-289. https://doi.org/10.1016/j.powtec.2012.06.006
[61] I. Safarik, K. Horska, K. Pospiskova, Z. Maderova, M.Safarikova, Microwave assisted synthesis of magnetically responsive composite materials, IEEE Trans. Magn. 49 (2013) 213-218. https://doi.org/10.1109/TMAG.2012.2221686
[62] I. Safarik, M. Safarikova, One step magnetic modification of non-magnetic solid materials, Int. J. Mat. Res. 105 (2014) 104-107. https://doi.org/10.3139/146.111009
[63] M.K. Beyer, M. Clausen-Schaumann, Mechanochemistry: The mechanical activation of covalent bonds, Chem. Rev. 105 (2005) 2921-2948. https://doi.org/10.1021/cr030697h
[64] I. Safarik, K. Horska, K. Pospiskova, J. Filip, M.Safarikova, Mechanochemical synthesis of magnetically responsive materials from non-magnetic precursors, Mat. Lett. 126 (2014) 202-206. https://doi.org/10.1016/j.matlet.2014.04.045
[65] I. Wagner-Dobler, H. von Canstein, Y. Li, K.N. Timmis, W.D. Deckwer, Removal of mercury from chemical wastewater by microorganism in technical scale, Environ. Sci. Technol. 34 (2000) 4628-4634. https://doi.org/10.1021/es0000652
[66] I. Safarik, K. Horska, M.Safarikova, Magnetically responsive biocomposites for inorganic and organic xenobiotics removal, in: P. Kotrba, M. Machova, T. Macek (Eds.), Microbial biosorption of metals, Springer Publications, Netherlands, 2011, pp. 301-320. https://doi.org/10.1007/978-94-007-0443-5_13
[67] C.B. Li, S. Hein, K.Wang, Biosorption of chitin and chitosan, Mater. Sci. Technol. 24 (2008) 1088-1099. https://doi.org/10.1179/174328408X341771
[68] S.X. Zhang, H.Y. Niu, Y.Q. Cai, Y.L. Shi, Barium alginate caged Fe3O4-C-18 magnetic nanoparticles for the preconcentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples, Anal. Chim Acta 665 (2010) 167-175. https://doi.org/10.1016/j.aca.2010.03.026
[69] Z. Lei, S. Zhai, J. Lv, Y. Fan, Q. An, Z. Xiao, Sodium alginate based magnetic carbonaceous biosorbents for highly efficient Cr(VI) removal from water, RSC Adv. 5(2015) 77932-77941. https://doi.org/10.1039/C5RA13226F
[70] I. Safarik, M. Safarikova, F. Weyda, E. Mosiniewiez-Szablewska, A. Slawska-Waniewska, Ferrofluid-modified plant based materials as adsorbents for batch separation of selected biologically active compounds and xenobiotics, J. Magn. Magn. Mater. 293 (2005) 371-376. https://doi.org/10.1016/j.jmmm.2005.02.033
[71] I. Safarik, M. Safarikova, Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal, Physics Procedia 9 (2010) 274-278. https://doi.org/10.1016/j.phpro.2010.11.061
[72] I. Safarik, K. Horska, B. Svobodova, M.Safarikova, Magnetically modified spent coffee grounds for dyes removal, Eur. Food Res. Technol. 234 (2012) 345-350. https://doi.org/10.1007/s00217-011-1641-3
[73] E. Baldikova, M. Safarikova, I. Safarik, Organic dyes removal using magnetically modified rye straw, J. Magn. Magn. Mater, 380 (2015) 181-185. https://doi.org/10.1016/j.jmmm.2014.09.003
[74] I. Safarik, Z. Maderova, K. Horska, E. Baldikova, K. Pospiskova, M.Safarikova, Spent Rooibos (Aspalathus linearis) tea biomass as an adsorbent for organic dye removal, Bioremed. J. 19 (2015) 183-187. https://doi.org/10.1080/10889868.2014.979279
[75] K. Pospiskova, I. Safarik, Magnetically modified spent grain as a low cost, biocompatible and smart carrier for enzyme immobilization, J. Sci. Food Agric. 93 (2013) 1598-1602. https://doi.org/10.1002/jsfa.5930
[76] N. Abdel-Raouf, A.A. Al-Homaidan, I.B. Ibraheem, Microalgae and wastewater treatment, Saudi, J. Biol. Sci. 19 (2012) 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005
[77] G. Markou, E. Nerantzis, Microalgae for high value compounds and biofuels production: a review with focus on cultivation under stress condition, Biotechnol. Adv. 31 (2013) 1532-1542. https://doi.org/10.1016/j.biotechadv.2013.07.011
[78] T. Haigh-Florez, C. de la Hera, E. Costas, G. Orellana, Microalgae dual head biosensors for selective detection of herbicides with fiber active luminescent O2 transduction, Biosens. Bioelectron. 54 (2014) 484-491. https://doi.org/10.1016/j.bios.2013.10.062
[79] M. R Granados, F.G. Acien, C. Gomez, J.M. Fernandez-Sevilla, E. Mollina-Grima, Evaluation of flocculants for the recovery of freshwater microalgae, Bioresour Technol. 118 (2012) 102-110. https://doi.org/10.1016/j.biortech.2012.05.018
[80] K.T. Semple, R.B. Cain, S. Schmidt, Biodegradation of aromatic compounds by microalgae, FEMS Microbiol. Lett. 170 (1999) 291-300. https://doi.org/10.1111/j.1574-6968.1999.tb13386.x
[81] P.Y. Toh, B.W. Ng, L.A. Ahmad, D.C. Chieh, J. Lim, The role of particle to shell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells, Nanoscale 6 (2014) 12838-12848. https://doi.org/10.1039/C4NR03121K
[82] R. Venu, B. Lim, X.H. Hu, I. Jeong, T.S. Ramulu, C.G. Kim, On chip manipulation and trapping of microorganisms using a pattered magnetic pathway, Microfluidics Nanofluidics 14 (2013) 277-285. https://doi.org/10.1007/s10404-012-1046-z
[83] E. Eroglu, N.J. D’Alonzo, S.M. Smith, C.L. Raston, Vortex fluidic entrapment of functional microalgal cells in a magnetic polymer matrix, Nanoscale 5 (2013) 2627-2631. https://doi.org/10.1039/c3nr33813d
[84] I. Safarik, G. Prochazkova, K. Pospiskova, T. Branyik, Magnetically modified microalgae and their applications, Crit. Rev. Biotechnol. 36 (2016) 931-941.
[85] C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresour. Technol. 102 (2011) 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
[86] L. Christenson, R. Sims, Production and harvesting of microalgae for wastewater treatment, biofuels and bioproducts, Biotechnol. Adv. 29 (2011) 686-702. https://doi.org/10.1016/j.biotechadv.2011.05.015
[87] D. Vandamme, I. Foubert, I. Fraeye, B. Meesschaert, K. Muylaert, Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications, Bioresour. Technol. 105 (2012) 114-119. https://doi.org/10.1016/j.biortech.2011.11.105
[88] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, Renew. Sust. Energy Rev. 14 (2010) 217-232. https://doi.org/10.1016/j.rser.2009.07.020
[89] S.K. Wang, F. Wang, Y.R. Hu, C.Z. Liu, Magnetic flocculant for high efficiency harvesting of microalgal cells, ACS Appl. Mater. Interfaces 6 (2014) 109-115. https://doi.org/10.1021/am404764n
[90] E.A. Naumenko, M.R. Dzamukova, R.F. Fakhrulin, Magnetically functionalized cells: Fabrication, characterization and biomedical applications, in: E. Katz (Eds.), Implantable bioelectronics, Wiley-VCH, Weinham, 2014, pp. 7-26.
[91] A.I. Zamaleeva, I.R. Sharipova, R.V. Shamagsumova, A.N. Ivanov, G.A. Evtugyn, D.G. Ishmuchametova, R.F. Fakhrullin, A whole cell amperometric herbicide biosensor based on magnetically functionalized microalgae and screen printed electrodes, Anal. Methods 3 (2011) 509-513. https://doi.org/10.1039/c0ay00627k
[92] T. Todd, Z.P. Zhen, W. Tang, H. Chen, G. Wang, Y.J. Chuang, K. Deaton, Z. Pan, J. Xie, Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors, Nanoscale 6 (2014) 2073-2076. https://doi.org/10.1039/c3nr05623f
[93] J.M. Dias, M.C.M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous phase treatment: A review, J. Environ. Manage. 85 (2007) 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031
[94] K. Kekalo, V. Agabekov, G. Zhavnerko, T. Shutava, V. Kutavichus, V. Kabanov, N. Goroshko, Magnetic nanocomposites for sorbents and glue layers, J. Magn. Magn. Mater. 311(2007) 63-67. https://doi.org/10.1016/j.jmmm.2006.10.1159
[95] I. Safarik, K. Horska, K. Pospiskova, M.Safarikova, Magnetically responsive activated carbons for bio and environmental applications, Int. Rev. Chem. Eng. 4 (2012) 346-351.
[96] Y.H. Ao, J.J. Xu, D.G. Fu, C.W. Yuan, Photocatalytic degradation of X-3B by titania coated magnetic activated carbon under UV and visible irradiation, J. Alloys. Comp. 471 (2009) 33-38. https://doi.org/10.1016/j.jallcom.2008.04.001
[97] L.C.A. Oliveira, R.V.R.A. Rios, J.D. Fabris, R.M. Lago, K. Sapag, Magnetic particle technology. A simple preparation of magnetic composites for the adsorption of water contaminats, J. Chem. Edu. 81 (2004) 248-250. https://doi.org/10.1021/ed081p248
[98] I. Safarik, M. Safarikova, Magnetically modified microbial cells: A new type of magnetic adsorbents, China Particuol. 5 (2007) 19-25. https://doi.org/10.1016/j.cpart.2006.12.003
[99] Y. Q. Ji, Y.T. Hu, Q. Tian, X.Z. Shao, J.Y. Li, M.Safarikova,I. Safarik, Biosorption of strontium ions by magnetically modified yeast cells, Sep. Sci. Technol. 45 (2010) 1499-1504. https://doi.org/10.1080/01496391003705664
[100] I. Safarik, Z. Sabatkova, M. Safarikova, Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisae cells, J. Agric. Food Chem. 56 (2008) 7925-7928. https://doi.org/10.1021/jf801354a
[101] E. Sykova, P. Jendelova, Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord, Ann. N. Y. Acad. Sci. 1049 (2005) 146-160. https://doi.org/10.1196/annals.1334.014
[102] I. Safarik, K. Horska, M. Safarikova, Magnetically modified spent grain for dye removal, J. Cereal Sci. 53 (2011) 78-80. https://doi.org/10.1016/j.jcs.2010.09.010
[103] M. Safarikova, I. Roy, M.N. Gupta,I. Safarik, Magnetic alginate microparticles for purification of α-amylases, J. Biotechnol. 105 (2003) 255-260. https://doi.org/10.1016/j.jbiotec.2003.07.002
[104] I. Safarik, Z. Sabatkova,M. Safarikova, Invert sugar formation with Saccharomyces cerevisaecells encapsulated in magnetically responsive alginate microparticles, J. Magn. Magn. Mater. 521 (2009) 1478-1481. https://doi.org/10.1016/j.jmmm.2009.02.056
[105] I. Safarik, L.F.T Rego, M. Borovska, E. Mosiniewicz-Szablewska, F. Weyda, M. Safarikova, New magnetically responsive yeast basedbiosorbent for the efficient removal of water soluble dyes, Enzyme Microbiol. Technol. 40 (2007) 1551-1556. https://doi.org/10.1016/j.enzmictec.2006.10.034
[106] R.F. Fakhrullin, L.V. Shlykova, A.L. Zamaleeva, D.K. Nurgaliev, Y.N. Osin, J. Garcia-Alonso, V.N. Paunov, Interfacing living unicellular algae cells with biocompatible polyelectrolyte stabilized magnetic nanoparticles, Macromol. Biosci. 10 (2010) 1257-1264. https://doi.org/10.1002/mabi.201000161
[107] I. Safarik, K. Pospiskova, Z. Maderova, E. Baldikova, K. Horska, M. Safarikova, Microwave synthesized magnetic chitosan microparticles for yeast cells immobilization, Yeast 32 (2015) 239-243.
[108] R.T Minullina, Y.N. Osin, D.G. Ishmuchametova, R.F. Fakhrullin, A direct technique for magnetic functionalization of living human cells, Langmuir 27 (2011) 7708-7713. https://doi.org/10.1021/la2006869