Hydrothermal Synthesis of Supercapacitors Electrode Materials


Hydrothermal Synthesis of Supercapacitors Electrode Materials

Christelle Pau Ping Wong, Chin Wei Lai, Joon Ching Juan

Nowadays, electrochemical capacitors have been considered as one of the important power sources to overcome the environmental problems such as depletion of fossil fuels and increase in energy demand. The electrochemical capacitors are considered promising energy storage devices because they store a large amount of energy in comparison to the conventional capacitors and deliver higher power than batteries. Electrochemical capacitor electrodes play a vital role in enhancing the electrochemical performance, especially their active materials (i.e., carbonaceous, transition metal oxide and conducting polymers). In general, carbonaceous materials exhibited large surface area and high conductivity and hence are widely used as electrode materials for electrical double-layer capacitor system. In contrast, transition metal oxides and conducting polymers have been adopted for fabrication of pseudocapacitor electrodes owing to their storage mechanisms. In order to fully utilize the advantages of electrical double-layer capacitors and pseudocapacitors, hybrid capacitors have attracted great attention in the field of electronic devices and electric vehicles. Thus, this chapter presents a critical review of recent developments of the hydrothermal synthesis technique for hybrid capacitors’ electrodes in terms of their specific capacitance, voltage window, current density, cycling stability, and current density.

Electrochemical Capacitors, Carbonaceous Materials, Electrical Double-layer Capacitor, Pseudocapacitor, Hybrid Capacitors, Hydrothermal Synthesis

Published online 2/25/2018, 27 pages

DOI: http://dx.doi.org/10.21741/9781945291579-7

Part of Electrochemical Capacitors

[1] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111 (2011) 3577-3613. https://doi.org/10.1021/cr100290v
[2] C. Gong, M. Huang, P. Zhou, Z. Sun, L. Fan, J. Lin, J. Wu, Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor, Appl. Surf. Sci. 362 (2016) 469-476. https://doi.org/10.1016/j.apsusc.2015.11.194
[3] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863-4868. https://doi.org/10.1021/nl102661q
[4] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy 2 (2013) 213-234. https://doi.org/10.1016/j.nanoen.2012.10.006
[5] Z. Liu, X. Huang, Z. Zhu, J. Dai, A simple mild hydrothermal route for the synthesis of nickel phosphide powders, Ceram. Int. 36 (2010) 1155-1158. https://doi.org/10.1016/j.ceramint.2009.12.015
[6] M.M. Sk, C.Y. Yue, K. Ghosh, R.K. Jena, Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors, J. Power Sourc. 308 (2016) 121-140. https://doi.org/10.1016/j.jpowsour.2016.01.056
[7] S. Faraji, F.N. Ani, The development supercapacitor from activated carbon by electroless plating—A review, Renew. Sustain. Energ. Rev. 42 (2015) 823-834. https://doi.org/10.1016/j.jpowsour.2016.01.056
[8] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sourc. 91 (2000) 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
[9] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energ. 34 (2009) 4889-4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
[10] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review, Progr. Nat. Sci. 19 (2009) 291-312. https://doi.org/10.1016/j.pnsc.2008.07.014
[11] K. Tekin, S. Karagöz, S. Bektaş, A review of hydrothermal biomass processing, Renew. Sustain. Energ. Rev. 40 (2014) 673-687. https://doi.org/10.1016/j.rser.2014.07.216
[12] A.A. Mirghni, M.J. Madito, T.M. Masikhwa, K.O. Oyedotun, A. Bello, N. Manyala, Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications, J. Colloid Interface Sci. 494 (2017) 325-337. https://doi.org/10.1016/j.jcis.2017.01.098
[13] L. Wei, G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors, Nano Energy 1 (2012) 552-565. https://doi.org/10.1016/j.nanoen.2012.05.002
[14] L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes, Adv. Energy Mater. 1 (2011) 356-361. https://doi.org/10.1002/aenm.201100019
[15] H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Stephenson, C.K. King’ondu, C.M. Holt, B.C. Olsen, Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy, ACS Nano 7 (2013) 5131-5141. https://doi.org/10.1021/nn400731g
[16] C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, J. Power Sourc. 258 (2014) 290-296. https://doi.org/10.1016/j.jpowsour.2014.01.056
[17] Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties, Chem. Mater. 21 (2009) 2950-2956. https://doi.org/10.1021/cm9006603
[18] Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano 4 (2010) 4324-4330. https://doi.org/10.1021/nn101187z
[19] S. Manafi, M.B. Rahaei, Y. Elli, S. Joughehdoust, High‐yield synthesis of multi‐walled carbon nanotube by hydrothermal method, Can. J. Chem. Eng. 88 (2010) 283-286. https://doi.org/10.1002/cjce.20275
[20] L. Chen, Y. Hou, J. Kang, A. Hirata, T. Fujita, M. Chen, Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold, Adv. Energy Mater. 3 (2013) 851-856. https://doi.org/10.1002/aenm.201300024
[21] N. Li, X. Zhu, C. Zhang, L. Lai, R. Jiang, J. Zhu, Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors, J. Alloy. Comp. 692 (2017) 26-33. https://doi.org/10.1016/j.jallcom.2016.08.321
[22] K. H. Chang, C. C. Hu, Hydrothermal synthesis of hydrous crystalline RuO2 nanoparticles for supercapacitors, Electrochem. Solid State Lett. 7 (2004) A466-A469. https://doi.org/10.1149/1.1814593
[23] P. Yu, X. Zhang, D. Wang, L. Wang, Y. Ma, Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors, Cryst. Growth Des. 9 (2008) 528-533. https://doi.org/10.1021/cg800834g
[24] H. Wei, J. Wang, S. Yang, Y. Zhang, T. Li, S. Zhao, Facile hydrothermal synthesis of one-dimensional nanostructured α-MnO2 for supercapacitors, Physica E: Low-dimensional Systems and Nanostructures 83 (2016) 41-46. https://doi.org/10.1016/j.physe.2016.04.008
[25] J. L. Liu, L. Z. Fan, X. Qu, Low temperature hydrothermal synthesis of nano-sized manganese oxide for supercapacitors, Electrochim. Acta 66 (2012) 302-305. https://doi.org/10.1016/j.electacta.2012.01.095
[26] S. Zhao, T. Liu, D. Shi, Y. Zhang, W. Zeng, T. Li, B. Miao, Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor, Appl. Surf. Sci. 351 (2015) 862-868. https://doi.org/10.1016/j.apsusc.2015.06.045
[27] Z. Li, Z. Liu, B. Li, D. Li, Q. Li, H. Wang, MnO2 nanosilks self-assembled micropowders: Facile one-step hydrothermal synthesis and their application as supercapacitor electrodes, J. Taiwan Inst. Chem. Eng. 45 (2014) 2995-2999. https://doi.org/10.1016/j.jtice.2014.08.015
[28] W. Li, J. Shao, Q. Liu, X. Liu, X. Zhou, J. Hu, Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors, Electrochim. Acta 157 (2015) 108-114. https://doi.org/10.1016/j.electacta.2015.01.056
[29] H. Jiang, T. Zhao, C. Yan, J. Ma, C. Li, Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances, Nanoscale 2 (2010) 2195-2198. https://doi.org/10.1039/c0nr00257g
[30] Y. Z. Zheng, H. Y. Ding, M. L. Zhang, Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material, Mater. Res. Bull. 44 (2009) 403-407. https://doi.org/10.1016/j.materresbull.2008.05.002
[31] X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang, L. Liang, Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application, J. Alloy. Comp. 593 (2014) 184-189. https://doi.org/10.1016/j.jallcom.2014.01.036
[32] A. Paravannoor, R. Ranjusha, A. Asha, R. Vani, S. Kalluri, K. Subramanian, N. Sivakumar, T. Kim, S.V. Nair, A. Balakrishnan, Chemical and structural stability of porous thin film NiO nanowire based electrodes for supercapacitors, Chem. Eng. J. 220 (2013) 360-366. https://doi.org/10.1016/j.cej.2013.01.063
[33] J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei, X. Huang, Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application, J. Solid State Chem. 184 (2011) 578-583. https://doi.org/10.1016/j.jssc.2011.01.019
[34] K.K. Purushothaman, I. Manohara Babu, B. Sethuraman, G. Muralidharan, Nanosheet-assembled NiO microstructures for high-performance supercapacitors, ACS Appl. Mater. Interfaces 5 (2013) 10767-10773. https://doi.org/10.1021/am402869p
[35] Y. Zhang, J. Wang, H. Wei, J. Hao, J. Mu, P. Cao, J. Wang, S. Zhao, Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application, Mater. Lett. 162 (2016) 67-70. https://doi.org/10.1016/j.matlet.2015.09.123
[36] H. Wang, L. Zhang, X. Tan, C.M. Holt, B. Zahiri, B.C. Olsen, D. Mitlin, Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures, J. Phys. Chem. C115 (2011) 17599-17605. https://doi.org/10.1021/jp2049684
[37] G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods, J. Phys. Chem. C 113 (2009) 4357-4361. https://doi.org/10.1021/jp8106149
[38] C. Feng, J. Zhang, Y. Deng, C. Zhong, L. Liu, W. Hu, One-pot fabrication of Co3O4 microspheres via hydrothermal method at low temperature for high capacity supercapacitor, Mater. Sci. Eng. B 199 (2015) 15-21. https://doi.org/10.1016/j.mseb.2015.04.010
[39] B. Duan, Q. Cao, Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application, Electrochim. Acta 64 (2012) 154-161. https://doi.org/10.1016/j.electacta.2012.01.004
[40] L. Xie, K. Li, G. Sun, Z. Hu, C. Lv, J. Wang, C. Zhang, Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material, J. Solid State Electrochem. 17 (2013) 55-61. https://doi.org/10.1007/s10008-012-1856-7
[41] N. Padmanathan, S. Selladurai, Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes, RSC Adv. 4 (2014) 6527-6534. https://doi.org/10.1039/c3ra43339k
[42] J. Mu, J. Wang, J. Hao, P. Cao, S. Zhao, W. Zeng, B. Miao, S. Xu, Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions, Ceram. Int. 41 (2015) 12626-12632. https://doi.org/10.1016/j.ceramint.2015.06.091
[43] J. Shao, X. Li, Q. Qu, H. Zheng, One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors, J. Power Sourc. 219 (2012) 253-257. https://doi.org/10.1016/j.jpowsour.2012.07.045
[44] E. Zhou, C. Wang, Q. Zhao, Z. Li, M. Shao, X. Deng, X. Liu, X. Xu, Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts, Ceram. Int. 42 (2016) 2198-2203. https://doi.org/10.1016/j.ceramint.2015.10.008
[45] X. Zheng, X. Yan, Y. Sun, Y. Yu, G. Zhang, Y. Shen, Q. Liang, Q. Liao, Y. Zhang, Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes, J. Colloid Interface Sci. 466 (2016) 291-296. https://doi.org/10.1016/j.jcis.2015.12.024
[46] M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties, J. Phys. Chem. C 116 (2012) 16276-16285. https://doi.org/10.1021/jp304041m
[47] J. Chen, K. Huang, S. Liu, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor, Electrochim. Acta 55 (2009) 1-5. https://doi.org/10.1016/j.electacta.2009.04.017
[48] J. Xu, T. Ding, J. Wang, J. Zhang, S. Wang, C. Chen, Y. Fang, Z. Wu, K. Huo, J. Dai, Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor, Electrochim. Acta 174 (2015) 728-734. https://doi.org/10.1016/j.electacta.2015.06.044
[49] M. Zhu, W. Meng, Y. Huang, Y. Huang, C. Zhi, Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide, ACS Appl. Mater. Interfaces 6 (2014) 18901-18910. https://doi.org/10.1021/am504756u
[50] J. Zang, X. Li, In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors, J. Mater. Chem. 21 (2011) 10965-10969. https://doi.org/10.1039/c1jm11491c
[51] D. Su, H.-J. Ahn, G. Wang, Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries, J. Mater. Chem. A 1 (2013) 4845-4850. https://doi.org/10.1039/c3ta00031a
[52] Y. Dong, K. Li, P. Jiang, G. Wang, H. Miao, J. Zhang, C. Zhang, Simple hydrothermal preparation of α-, β-, and γ-MnO2 and phase sensitivity in catalytic ozonation, RSC Adv. 4 (2014) 39167-39173. https://doi.org/10.1039/C4RA02654C
[53] L. Kouchachvili, N. Maffei, E. Entchev, Novel binding material for supercapacitor electrodes, J. Solid State Electrochem. 18 (2014) 2539-2547. https://doi.org/10.1007/s10008-014-2500-5
[54] P. Cao, L. Wang, Y. Xu, Y. Fu, X. Ma, Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor, Electrochim. Acta 157 (2015) 359-368. https://doi.org/10.1016/j.electacta.2014.12.107
[55] N. Lin, J. Tian, Z. Shan, K. Chen, W. Liao, Hydrothermal synthesis of hydrous ruthenium oxide/graphene sheets for high-performance supercapacitors, Electrochim. Acta 99 (2013) 219-224. https://doi.org/10.1016/j.electacta.2013.03.115
[56] W. Yang, Z. Gao, J. Wang, B. Wang, L. Liu, Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors, Solid State Sci. 20 (2013) 46-53. https://doi.org/10.1016/j.solidstatesciences.2013.03.011
[57] H. Liu, J. Zhang, D. Xu, L. Huang, S. Tan, W. Mai, Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material, J. Solid State Electrochem. 19 (2015) 135-144. https://doi.org/10.1007/s10008-014-2580-2
[58] Y. Liu, D. Yan, R. Zhuo, S. Li, Z. Wu, J. Wang, P. Ren, P. Yan, Z. Geng, Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors, J. Power Sourc. 242 (2013) 78-85. https://doi.org/10.1016/j.jpowsour.2013.05.062
[59] S. Deng, D. Sun, C. Wu, H. Wang, J. Liu, Y. Sun, H. Yan, Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications, Electrochim. Acta 111 (2013) 707-712. https://doi.org/10.1016/j.electacta.2013.08.055
[60] X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M.B. Chan-Park, C.M. Li, P. Chen, Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode, Carbon 50 (2012) 4865-4870. https://doi.org/10.1016/j.carbon.2012.06.014
[61] Z. Li, J. Wang, S. Liu, X. Liu, S. Yang, Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors, J. Power Sourc. 196 (2011) 8160-8165. https://doi.org/10.1016/j.jpowsour.2011.05.036
[62] J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability, Chem. Mater. 24 (2012) 1158-1164. https://doi.org/10.1021/cm203697w
[63] Y. Fan, X. Zhang, Y. Liu, Q. Cai, J. Zhang, One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors, Mater. Lett. 95 (2013) 153-156. https://doi.org/10.1016/j.matlet.2012.12.110
[64] M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H. B. R. Lee, B.H. Kim, Y. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage, Sci. Rep. 5 (2015). https://doi.org/10.1038/srep08151
[65] Y. Chen, X. Zhang, D. Zhang, Y. Ma, One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors, J. Alloy. Comp. 511 (2012) 251-256. https://doi.org/10.1016/j.jallcom.2011.09.045
[66] G. J. Liu, L. Q. Fan, F. D. Yu, J. H. Wu, L. Liu, Z. Y. Qiu, Q. Liu, Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors, J. Mater. Sci. 48 (2013) 8463-8470. https://doi.org/10.1007/s10853-013-7663-4
[67] Z. Song, Y. Zhang, W. Liu, S. Zhang, G. Liu, H. Chen, J. Qiu, Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors, Electrochim. Acta 112 (2013) 120-126. https://doi.org/10.1016/j.electacta.2013.08.155
[68] Y. Jiang, D. Chen, J. Song, Z. Jiao, Q. Ma, H. Zhang, L. Cheng, B. Zhao, Y. Chu, A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors, Electrochim. Acta 91 (2013) 173-178. https://doi.org/10.1016/j.electacta.2012.12.032
[69] S. Min, C. Zhao, G. Chen, X. Qian, One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors, Electrochim. Acta 115 (2014) 155-164. https://doi.org/10.1016/j.electacta.2013.10.140
[70] X.A. Chen, X. Chen, F. Zhang, Z. Yang, S. Huang, One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor, J. Power Sourc. 243 (2013) 555-561. https://doi.org/10.1016/j.jpowsour.2013.04.076
[71] D. Guan, Z. Gao, W. Yang, J. Wang, Y. Yuan, B. Wang, M. Zhang, L. Liu, Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material, Mater. Sci. Eng. B 178 (2013) 736-743. https://doi.org/10.1016/j.mseb.2013.03.010
[72] J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor, ACS Nano 7 (2013) 6237-6243. https://doi.org/10.1021/nn4021955