High-Performance Polymer Type Capacitors

$20.00

High-Performance Polymer Type Capacitors

Tulay Y. Inan

This book chapter concentrates on energy storage applications of thin film containing electrochemical capacitors (supercapacitors) with specifically high-temperature polymers (fluorinated polymers, polyimides, polyarylenes, polyvinyl pyrollidone, etc.) for their good thermal and hydrolytic stability, excellent mechanical and chemical stability, low cost, flexibility and commercial availability. It consists of three main parts as given in the table of contents related to the 1) fluorinated high-performance polymers (FHPP) 2) nonfluorinated high-performance polymers (NFHPP) and 3) fluorinated and nonfluorinated high-performance polymers (FNFHPP) with their composites. A total of 141 literature reviewed references are cited.

Keywords
Thin Film, Electrochemical Capacitors, Supercapacitor, Dielectric Material, Separator, Solid Separators, High-Performance Polymers, Fluorinated Polymers, Polyimides, Polyarylenes, Polyvinyl Pyrollidone

Published online 2/25/2018, 70 pages

DOI: http://dx.doi.org/10.21741/9781945291579-6

Part of Electrochemical Capacitors

References
[1] M.M. Nasef, SA. Gürsel, D. Karabelli, O. Guven, Radiation-grafted materials for energy conversion and energy storage applications, Prog. Polym. Sci. 63 (2016) 1–41. https://doi.org/10.1016/j.progpolymsci.2016.05.002
[2] https://en.wikipedia.org/wiki/Supercapacitor
[3] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483–98. https://doi.org/10.1016/S0013-4686(00)00354-6
[4] ACD Leon, Q. Chen, NB. Palaganas, JO. Palaganas, J. Manapat, RC. Advincula, High performance polymer nanocomposites for additive manufacturing applications, React. Funct. Polym. 103 (2016) 141–155. https://doi.org/10.1016/j.reactfunctpolym.2016.04.010
[5] X. Peng, W. Xu, L. Chen, Y. Ding, T. Xiong, S. Chen, H. Hou, Development of high dielectric polyimides containing bipyridine units for polymer film capacitor, React. Funct. Polym. 106 (2016) 93-98. https://doi.org/10.1016/j.reactfunctpolym.2016.07.017
[6] I. Treufeld, D.H. Wang, B.A. Kurish, L.-S. Tan, L. Zhu, Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain, J. Mater. Chem. A 2 (2014) 20683-20696. https://doi.org/10.1039/C4TA03260H
[7] Editor-in-chief, Lide R. D. (1913–1995). Strength of chemical bonds. Boca Raton: CRC Press In CRC Handbook of Chemistry and Physics 75th Edition (Special Student Edition), 9-51–9-73.
[8] H. Sheng, M. Wei, A.D. Aloia, G. Wu, Heteroatom polymer-derived 3d high-surface-area and mesoporous graphene sheet-like carbon for supercapacitors, ACS Appl. Mater. Interf. 8 (44) (2016) 30212-30224. https://doi.org/10.1021/acsami.6b10099
[9] Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu, G.M. Haarberg, Effects of various binders on supercapacitor performances, Int. J. Electrochem. Sci. 11 (2016) 8270-8279. https://doi.org/10.20964/2016.10.04
[10] J.M. Rosas, R.Ruiz-Rosas, R. Berenguer, D. Cazorla-Amorós, E. Morallón, H. Nishihara, T. Kyotani, J. Rodríguez-Mirasol, T. Cordero, Easy fabrication of superporous zeolite templated carbon electrodes by electrospraying on rigid and flexible substrates, J. Mater. Chem. A 4 (2016) 4610-4618. https://doi.org/10.1039/C6TA00241B
[11] X. Meng, D. Deng, , Bio-inspired synthesis of α-Ni(OH)2 nanobristles on various substrates and their applications, J. Mater. Chem. A 4 (2016) 6919-6925. https://doi.org/10.1039/C5TA09329E
[12] P. Staiti, F. Lufrano, Nafion® and Fumapem® polymer electrolytes for the development of advanced solid-state supercapacitors, Electrochim. Acta 206 (2016) 432-439. https://doi.org/10.1016/j.electacta.2015.11.103
[13] T. Hibino, K. Kobayashi, M. Nagao, S. Kawasaki, High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte, Sci. Rep. 5 (2015) 7903. https://doi.org/10.1038/srep07903
[14] Y.J. Park, S.J. Kang, Y. Shin, R.H. Kim, I. Bae, C. Park, Non-volatile memory characteristics of epitaxially grown PVDF-TrFE thin films and their printed micropattern application, Curr. Appl. Phys. 11 (2011) 30-34. https://doi.org/10.1016/j.cap.2010.11.119
[15] Y.J. Park, S.J. Kang, B. Lotz, M. Brinkmann, A. Thierry, K.J. Kim, C. Park, Ordered ferroelectric PVDF-TrFE thin films by high throughput epitaxy for nonvolatile polymer memory, Macromolecules 41 (2008) 8648-8654. https://doi.org/10.1021/ma801495k
[16] K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, R. Ratheesh, Preparation and properties of silica filled PTFE flexible laminates for microwave circuit applications, Compos. Part A Appl. Sci. Manuf. 40 (2009) 1179-1185. https://doi.org/10.1016/j.compositesa.2009.05.007
[17] F. Xiang, H. Wang, M.L. Zhang, X. Yao, Frequency-temperature compensation mechanism for bismuth based dielectric/PTFE microwave composites, J. Electroceram. 21 (2008) 457-460. https://doi.org/10.1007/s10832-007-9208-1
[18] R. Nowak, P. Hart, D. Alcoe, Large thin organic PTFE substrates for multichip applications Proceedings – Electronic Components and Technology Conference 2 (2005)1359-1363.
[19] M. Nowogrodzki, Improved electroplated PTFE for high performance capacitor applications, EIC 1971 – Proceedings of the 10th Electrical Insulation Conference, 7460805 (2016) 174-176.
[20] Y. Su, G. Xie, T. Xie, H. Zhang, Z. Ye, Q. Jing, H. Tai, X. Du, Y. Jiang, Wind energy harvesting and self-powered flow rate sensor enabled by contact electrification, J. Phys. D. 49 (2016) 215601. https://doi.org/10.1088/0022-3727/49/21/215601
[21] M.-K. Kim, M.-S. Kim, S.-E. Jo, Y.-J. Kim, Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy, Smart Mater. Struct. 25 (2016) 125007. https://doi.org/10.1088/0964-1726/25/12/125007
[22] P. Sivaraman, S.K. Rath, V.R. Hande, A.P. Thakur, M. Patri, A.B. Samui, All-solid-supercapacitor based on polyaniline and sulfonated polymers, Synt. Met. 156 (2006) 1057–1064. https://doi.org/10.1016/j.synthmet.2006.06.017
[23] L. Dumas, E. Fleury, D. Portinha, Wettability adjustment of PVDF surfaces by combining radiation-induced grafting of (2,3,4,5,6) pentafluorstyrene and subsequent chemoselective “click type” reaction. Polymer 55 (2014) 2628–34. https://doi.org/10.1016/j.polymer.2014.04.002
[24] Z. Deng, H. Wei, S. Fan, J. Gan, Design and analysis a novel RF MEMS switched capacitor for low pull-in voltage application, Microsyst. Technol. 22 (2016) 2141-2149. https://doi.org/10.1007/s00542-015-2604-6
[25] S. Abdalla, F. Al-Marzouki, A. Obaid, S. Gamal, Effect of addition of colloidal silica to films of polyimide, polyvinylpyridine, polystyrene, and polymethylmethacrylate nano-composites, Materials 9 (2016) 104. https://doi.org/10.3390/ma9020104
[26] J.B. In, B. Hsia, J.H. Yoo, S. Hyun, C. Carraro, R. Maboudian, C.P. Grigoropoulos, Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide, Carbon 83 (2015) 144-151. https://doi.org/10.1016/j.carbon.2014.11.017
[27] A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo, J. A López-Villanueva, L.Fermín Capitan-Vallvey, A.J. Palma, Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing, Sens. Actut. B Chem. 195 (2014) 123-131.
[28] F. Zhang, C. Tuck, R. Hague, Y. He, E. Saleh, Y. Li, C. Sturgess, R. Wildman, Inkjet printing of polyimide insulators for the 3D printing of dielectric materials for microelectronic applications, J. Appl. Polym. Sci. 133 (2016) 43361. https://doi.org/10.1002/app.43361
[29] J.A. Dobrzynska, M.A.M. Gijs, Polymer-based flexible capacitive sensor for three-axial force measurements, J. Micromech. Microeng. 23 (2013) 015009. https://doi.org/10.1088/0960-1317/23/1/015009
[30] J.A. Dobrzynska, M.A.M. Gijs, Capacitive flexible force sensor, Procedia Eng. 5 (2010) 404-407. https://doi.org/10.1016/j.proeng.2010.09.132
[31] K.-R. Lin, T.-H. Liu, S.-W. Lin, C.-H. Chang, C.-H. Lin, occlusive bite force measurement utilizing flexible force sensor array fabricated with low-cost multilayer ceramic capacitors (MLCC), TRANSDUCERS 2009-15th International Conference on Solid-State Sensors, Actuators and Microsystems, 5285593, pp. 2238-2241
[32] K.D. Jamison, B. Balliette, High temperature performance of oxide film capacitors, IMAPS International Conference on High Temperature Electronics Network, HiTEN 2011, pp.21-26
[33] J-H. Lee, H. Jin, J-W. Kim, K-H. Kim, B.W. Park, T-H. Yoon, H. Kim, K-C.Shin, H.S. Kim, Formation of liquid crystal multi-domains with different threshold voltages by varying the surface anchoring energy, J. Appl. Phys. 112 (2012) 054107. https://doi.org/10.1063/1.4747909
[34] J. Chen, J.-C. Ho, A flexible universal plane for displays, Inf. Disp. 27 (2011) 6-9.
[35] M. Mativenga, M.H. Choi, J.W. Choi, J. Jang, Transparent flexible circuits based on amorphous-indium-gallium-zincoxide thin-film transistors, IEEE Electr. Device L. 32 (2011) 170-172. https://doi.org/10.1109/LED.2010.2093504
[36] L. Dumitru, K. Manoli, M. Magliulo, L. Torsi, Comparison between different architectures of an electrolyte-gated organic thin-film transistor fabricated on flexible Kapton substrates, Proceedings of the 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2013 ,6576074. https://doi.org/10.1109/IWASI.2013.6576074
[37] D.P. Hanley, E.J. Tucholski, Acoustic signatures of partial electric discharges in different thicknesses of Kapton, Proceedings of Meetings on Acoustics, 9, 065004,2010. https://doi.org/10.1121/1.3486243
[38] E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultra-thin flexible capacitive humidity sensor, Sens. Actuat. B Chem. 143 (2009) 302-307.
[39] J.N. Tiwari, J.S. Meena, C.-S. Wu, N. Tiwari, M.C. Chu, F.-C. Chang, F.-H. Ko, Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors, Chem. Sus. Chem. 3 (2010) 1051-1056. https://doi.org/10.1002/cssc.201000118
[40] R.N. Das, F.D. Egitto, B. Wilson, M.D. Poliks, V.R. Markovich, Polymer nanocomposites, printable and flexible technology for electronic packaging, International Symposium on Microelectronics, IMAPS 2009, 995-1000
[41] M.M. Ahmad, R.R.A Syms, I.R. Young, B. Mathew, W. Casperz, S.D. Taylor-Robinson, C.A. Wadsworth and W.M.W Gedroyc, Catheter-based flexible microcoil RF detectors for internal magnetic resonance imaging, J. Micromech. Microeng, 19 (2009) 074011. https://doi.org/10.1088/0960-1317/19/7/074011
[42] J.K. Choi, K.Y. Paek, T.-H. Yoon, Adhesive and dielectric properties of novel polyimides with bis(3,3′-aminophenyl)-2,3,5,6-tetrafluoro-4-trifluoromethyl phenyl phosphine oxide (mDA7FPPO), Eur. Polym. J. 45 (2009) 1652-1658. https://doi.org/10.1016/j.eurpolymj.2009.03.009
[43] A. Kavetskiy, G. Yakubova, Q. Lin, D. Chan, S.M. Yousaf, K. Bower, J.D. Robertson, A. Garnov, D. Meier, Promethium-147 capacitor, Appl. Radiat. Isot. 67 (2009) 1057-1062. https://doi.org/10.1016/j.apradiso.2009.02.084
[44] M. Balde, F. Jacquemoud-Collet, B. Charlot, P. Combette, B. Sorli, Microelectronic technology on paper substrate, DTIP 2012 – Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 6235335, pp. 140-143
[45] B. Shao, Q. Chen, R. Liu, L.-R. Zheng, Design of fully printable and configurable chipless RFID tag on flexible substrate, Microw. Opt. Technol. Lett. 54 (2012) 226-230. https://doi.org/10.1002/mop.26499
[46] J.S. Meena, M.-C. Chu, R. Singh, H-P D. Shieh, P.-T.Liu, F.-H. Ko, Controlled deposition of new organic ultrathin film as a gate dielectric layer for advanced flexible capacitor devices, J. Mater. Sci. Mater. Electron. 24 (2013) 1807-1812. https://doi.org/10.1007/s10854-012-1016-y
[47] A.M. A.-Workman, A. Jeans, S. Braymen, R. E. Elder, R. A. Garcia, A.de la F. Vornbrock, J. Hauschildt, E. Holland, W. Jackson, M. Jam, F. Jeffrey, K. Junge, H-J. Kim, O. Kwon, D. Larson, J. Maltabes, P. Mei, C. Perlov, M. Smith, D. Stieler, C.P. Taussig, S. Trovinger, Zhao, Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays, HP Laboratories Technical Report 23 (2012).
[48] R. Ma, AF. Baldwin, C. Wang, I. Offenbach, M. Cakmak, R. Ramprasad, G.A Sotzing, Rationally designed polyimides for high-energy density capacitor applications, ACS Appl. Mater. Interfaces 6 (2014) 10445-10451. https://doi.org/10.1021/am502002v
[49] M. Watanabe, S. Imaizumi, T. Yasuda, H. Kokubo, Ion gels for ionic polymer actuators, (Chapter) in: Asaka, Kinji (et al.) (Eds.), Soft Actuators: Materials, Modeling, Applications, and Future Perspectives, Springer, Tokyo, 2014, pp.141-156.
[50] W-H. Zhou, L.-C. Wang, L.-B. Wang, numerical study of the structural parameter effects on the dynamic characteristics of a polyimide film micro-capacitive humidity sensor, IEEE Sens. J. 16 (2016) 5979-5986. https://doi.org/10.1109/JSEN.2016.2579644
[51] Y.H. Chen, H.C. Chang, C.C. Lai, I.N. Chang, Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe, J. Phys. Conf. Ser. 266 (2011) 012066. https://doi.org/10.1088/1742-6596/266/1/012066
[52] N. Venkat, T.D. Dang, Z. Bai, V.K. McNier, J. N. DeCerbo, B.-H. Tsao, J.T. Stricker, High temperature polymer film dielectrics for aerospace power conditioning capacitor applications, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 68 (2010) 16-21.
[53] Y-H. Kim, M. Kim, S. Oh, H. Jung, Y. Kim, T-S Yoon, Y.-S. Kim, H.H. Lee, Organic memory device with polyaniline nanoparticles embedded as charging elements, Appl. Phys. Lett. 100 (2012) 163301. https://doi.org/10.1063/1.4704571
[54] R. Yang, R. Wei, K. Li, Tong, K. Jia, X. Liu, Crosslinked polyarylene ether nitrile film as flexible dielectric materials with ultrahigh thermal stability, Sci. Rep. 6 (2016) 36434. https://doi.org/10.1038/srep36434
[55] R. Ulrich, L. Schaper, Materials options for dielectrics in integrated capacitors, Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces (2000) 38-43. https://doi.org/10.1109/ISAPM.2000.869240
[56] L.Z. Liu, X.H. Gao, L. Weng, H. Shi, C. Wang, Preparation of high-dielectric-constant Ag@Al2O3/polyimide composite films for embedded capacitor applications, Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, (2012) 6318901.
[57] A. Alias, Z. Ahmad, A.B. Ismail, Preparation of polyimide/Al2O3 composite films as improved solid dielectrics, Mater. Sci. Eng. B 176 (2011) 799-804. https://doi.org/10.1016/j.mseb.2011.04.001
[58] Y.Y. Yan, M. Xiong, B. Liu, Y.T. Ding, Z.M. Chen, Low capacitance and highly reliable blind through-silicon-vias (TSVs) with vacuum-assisted spin coating of polyimide dielectric liners, Sci. China Technol. Sci. 59 (2016) 1581-1590. https://doi.org/10.1007/s11431-016-0266-6
[59] C.A. Grabowski, S.P. Fillery, N.M. Westing, C. Chi, J.S. Meth, M.F. Durstock, R.A. Vaia, Dielectric breakdown in silica-amorphous polymer nanocomposite films: The role of the polymer matrix, ACS Appl. Mater. Interf. 5 (2013) 5486-5492. https://doi.org/10.1021/am4005623
[60] S-H. Huang, T-M. Don, W-C. Lai, C-C. Chen, L-P. Cheng, Porous structure and thermal stability of photosensitive silica/polyimide composites prepared by sol-gel process, J. Appl. Polym. Sci. 114 (2009) 2019-2029. https://doi.org/10.1002/app.30790
[61] W. Xu, Y. Ding, S. Jiang, W. Ye, X. Liao, H. Hou, High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO3 hybrid nanofibers, Polym. Compos. 37 (2016) 794-801. https://doi.org/10.1002/pc.23236
[62] L. Liu, Y. Zhang, W. Tong, L. Ding, P.K. Chu, P. Li, Polyimide composites composed of covalently bonded BaTiO3@GO hybrids with high dielectric constant and low dielectric loss, RSC Adv. 6 (2016) 86817-86823. https://doi.org/10.1002/pc.23236
[63] Y. Imanaka, H. Amada, F. Kumasaka, Dielectric and insulating properties of embedded capacitor for flexible electronics prepared by aerosol-type nanoparticle deposition, Jpn. J. Appl. Phys. 52 (2013) 05DA02. https://doi.org/10.7567/JJAP.52.05DA02
[64] Y. Imanaka, H. Amada, F. Kumasaka, Microelectronics packaging application using post-LTCC technology, 2011 IMAPS/ACerS 7th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2011.
[65] D. Xie, X. Wu, T.-L. Ren, L.-T. Liu, Z.-M. Dang, Fabrication and characterization of embedded capacitors based on novel nanocomposite as dielectric materials, Nami. Jishu yu Jingmi Gongcheng/Nanotechnology and Precision engineering, 8 (2010) 460-464.
[66] B.J. Kang, C.K. Lee, J.H. Oh, All-inkjet-printed electrical components and circuit fabrication on a plastic substrate, Microelectron Eng, 97 (2012) 251-254. https://doi.org/10.1016/j.mee.2012.03.032
[67] Y.-H. Wu, J.-W. Zha, Z.-Q. Yao, F. Sun, R.K.Y. Li, Z.-M. Dang, Thermally stable polyimide nanocomposite films from electrospun BaTiO3 fibers for high-density energy storage capacitors, RSC Adv. 5 (2015) 44749-4475. https://doi.org/10.1039/C5RA06684K
[68] X. Peng, W. Xu, L. Chen, Y. Ding, S. Chen, X. Wang, H. Hou, , Polyimide complexes with high dielectric performance: Toward polymer film capacitor applications, J. Mater. Chem. C 4 (2016) 6452-6456. https://doi.org/10.1039/C6TC01304J
[69] R.K. Gupta, D.Y. Kusuma, P.S. Lee, M.P. Srinivasan, Copper nanoparticles embedded in a polyimide film for non-volatile memory applications, Mater. Lett. 68 (2012) 287-289. https://doi.org/10.1016/j.matlet.2011.10.099
[70] S.S. Wong, A.L.S. Loke, J. T. Wetzel, P. H. Townsend, R.N. Vrtis, M. P. Zussman, Electrical reliability of Cu and low-κ dielectric integration, Materials Research Society Symposium – Proceedings, 511 (1998) 317-327. https://doi.org/10.1557/PROC-511-317
[71] A.L.S. Loke, S.S. Wong, N.A. Talwalkar, J.T. Wetzel, P.H. Townsend, T. Tanabe, R.N. Vrtis, M.P. Zussman, D. Kumar, Evaluation of copper penetration in low-κ polymer dielectrics by bias-temperature stress, Materials Research Society Symposium – Proceedings, 565 (1999) 173-187. https://doi.org/10.1557/PROC-565-173
[72] M. Agarwal, M.D. Balachandran, S. Shrestha, K. Varahramyan, SnO2 nanoparticle-based passive capacitive sensor for ethylene detection, J. Nanomater. (2012) 145406.
[73] C. Wu, F. Li, T. Guo, T.W. Kim, Carrier transport in volatile memory device with SnO2 quantum dots embedded in a polyimide layer, Jpn. J. Appl. Phys. 50 (2011) 095003.
[74] N.B. Spurr, C.A. Edmondson, M.C. Wintersgill, J.J. Fontanella, T. Adams, Effect of nanoparticles on the dielectric properties of polyimide, Smart Mater. Struct. 20 (2011) 094001. https://doi.org/10.1088/0964-1726/20/9/094001
[75] N. Bestaoui-Spurr, T. Adams, C. Rhodes, C.A. Edmondson, J.J. Fontanella, M.C. Wintersgill, Polymer nanocomposites for high energy storage capacitors, ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010,2, pp. 257-263
[76] C. Zou, D. Kushner, S. Zhang, Wide temperature polyimide/ZrO2 nanodielectric capacitor film with excellent electrical performance, Appl. Phys. Lett. 98 (2011) 082905. https://doi.org/10.1063/1.3559623
[77] M-C. Chu, J.S. Meena, C-C. Cheng, H-C. You, F-C. Chang, F.-H. Ko, Plasma-enhanced flexible metal-insulator-metal capacitor using high-k ZrO2 film as gate dielectric with improved reliability, Microelectron Reliab. 50 (2010) 1098-1102. https://doi.org/10.1016/j.microrel.2010.05.004
[78] L. Weng, Q.-S. Xia, L.-W. Yan, L.-Z. Liu, Z. Sun, In situ preparation of polyimide/titanium carbide composites with enhanced dielectric constant, Polym. Compos. 37 (2016)125-130. https://doi.org/10.1002/pc.23162
[79] W. Ling, Q. Xia, L. Yan, C. Wang, M. Cao, L. Liu, Preparation, morphology and dielectric properties of nano-TiC/polyimide composite films, Polym. Polym. Compos. 22 (2014) 123-128.
[80] Q-S. Xia, W. Ling, L.-W. Yan, L-Z. Liu, M.-C. Cao, J.-W. Liu, Preparation and dielectric properties of nano-TiC/polyimide composite films as embedded-capacitor application, 8th International Forum on Strategic Technology 2013, IFOST 2013 – Proceedings, 1, 6616976, pp. 230-232, 2013.
[81] C-J. Chang, M.-H. Tsai, G.-S. Chen, M.-S. Wu, T.-W. Hung, Preparation and properties of porous polyimide films with TiO2/polymer double shell hollow spheres, Thin Solid Films 517 (2009) 4966-4969. https://doi.org/10.1016/j.tsf.2009.03.201
[82] G. He, T. Zhong, L. Long, J. Wen, H. Li, Preparation and properties of the polyimide thin films reinforced by acylchloride-functionalized multiple-walled carbon nanotubes, J. Compos. Mater. 47 (2013) 3041-3051. https://doi.org/10.1177/0021998312461822
[83] B. Zhang, W. Yin, Y. Lu, L. Wan, The preparation and properties of BaTiO3-carbon nanotube/polyimide three-phase composites by in-situ polymerization for flexible package circuit, ICEPT-HDP 2012 Proceedings – 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging, 6474616 (2012) 272-274.
[84] G. He, J. Zhou, K. Tan, H. Li, Preparation, morphology and properties of acyl chloride grafted multiwall carbon nanotubes/fluorinated polyimide composites, Compos. Sci. Technol. 71 (2011) 1914-1920. https://doi.org/10.1016/j.compscitech.2011.09.006
[85] S. Imaizumi, Y. Ohtsuki, T. Yasuda, H. Kokubo, M. Watanabe, Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials, ACS Appl. Mater. Interface, 5 (2013) 6307-6315. https://doi.org/10.1021/am401351q
[86] S.-Q. Wang, Z.-H. Yang, H.-B. Li, X.-Y. Li, Q.-H. Guo, H2O2-activated polyimide-based carbon nanofiber non-woven fabrics and their capacitances, Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 7 (2009) 195-200.
[87] T. Le, Y. Yang, Z. Huang, F. Kang, Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance, J. Power Sources 78 (2015) 683-692. https://doi.org/10.1016/j.jpowsour.2014.12.055
[88] Z. Mo, G. Wu, D. Bao, Room-temperature preparation and dielectric properties of amorphous Bi 3.95Er 0.05Ti3O12 thin films on flexible polyimide substrates via pulsed laser deposition method, Appl. Surf. Sci. 258 (2012) 5323-5327. https://doi.org/10.1016/j.apsusc.2012.01.140
[89] Y. Cao, X. Zeng, Laser micropen integrated direct writing for fabrication of thick film gap-tuning capacitor, Microelectron. Eng. 114 (2014) 7-11.
[90] D.H. Wang, S.P. Fillery, M.F. Durstock, L.M. Dai, R.A. Vaia, L.S. Tan. Nanodiamond/polyimide high temperature dielectric films for energy storage applications, Adv. Mat. Res. (2013) 785-786. https://doi.org/10.4028/www.scientific.net/AMR.641-642.785
[91] N.V. Cvetkovic, K. Sidler, V. Savu, J. Brugger, D. Tsamados, A.M. Ionescu, Organic half-wave rectifier fabricated by stencil lithography on flexible substrate, Microelectron. Eng. 100 (2012) 47-50. https://doi.org/10.1016/j.mee.2012.07.110
[92] S. Diaham, M.-L. Locatelli, Space-charge-limited currents in polyimide films, Appl. Phys. Lett. 101 (2012) 242905-4. https://doi.org/10.1063/1.4771602
[93] J.F. Villasenor, Breaking paradigms in biochemical sensing, Electronic Products, 54 (2012).
[94] J.S. Meena, M.-C. Chu, F.-H. Ko, Flexible MIM capacitors using zirconium-silicate and hafnium-silicate as gate-dielectric films, INEC 2010- 2010 3rd International Nanoelectronics Conference, Proceedings 5425076, pp. 992-993.
[95] J.S. Meena, M.-C. Chu, C.-S. Wu, S. Ravipati, F.-H. Ko, Environmentally stable flexible metal-insulator-metal capacitors using zirconium-silicate and hafnium-silicate thin film composite materials as gate dielectrics, J. Nanosci. Nanotechnol. 11 (2011) 6858-6867. https://doi.org/10.1166/jnn.2011.4247
[96] H. Yamada, H. Okabe, K. Yamashita, Chemical wet etching process technology for fabricating SrTiO3 thin film capacitors on core resin films, JIEP, 12 (2009) 511-518. https://doi.org/10.5104/jiep.12.511
[97] H. Manuspiya, H. Ishida, Polybenzoxazine-based composites for increased dielectric constant, (Chapter 36) in: Ishida, H.; Agag, T (Eds.), H. Handbook of Benzoxazine Resins, Elsevier, Amsterdam, 2011, pp. 621-639.
[98] H. Tang, J. Zhong, J. Yang, Z. Ma, X. Liu, Flexible polyarylene ether nitrile/BaTiO3 nanocomposites with high energy density for film capacitor applications, J. Electron. Mater. 40 (2011)141-148. https://doi.org/10.1007/s11664-010-1417-8
[99] X. Huang, K. Wang, K. Jia, X. Liu, Polymer-based composites with improved energy density and dielectric constants by monoaxial hot-stretching for organic film capacitor applications, RSC Adv. 5 (2016) 51975-51982. https://doi.org/10.1039/C5RA05029D
[100] X. Huang, Z. Pu, L. Tong, R. Zhao, X. Liu, Novel PEN/BaTiO3/MWCNT multicomponent nanocomposite film with high thermal stability for capacitor applications, J. Electron. Mater. 42 (2013) 726-733. https://doi.org/10.1007/s11664-012-2391-0
[101] A.I. Mardare, M. Kaltenbrunner, N.S. Sariciftci, S. Bauer, A.W. Hassel, Ultra-thin anodic alumina capacitor films for plastic electronics, Physica Status Solidi 209 (2012) 813-818. https://doi.org/10.1002/pssa.201100785
[102] E. Zampetti, L. Maiolo, A. Pecora, F. Maita, S. Pantalei, A. Minotti, A. Valletta, M. Cuscunà, A. Macagnano, G. Fortunato, A. Bearzotti, Flexible sensorial system based on capacitive chemical sensors integrated with readout circuits fully fabricated on ultra-thin substrate, Sens. Actuat. B Chem. 155 (2011) 768-774.
[103] Y.-C. Lin, X.-X. Zhong, H.-X. Huang, H-Q. Wang, Q-P Feng, Q-Yu Li, Q.-P. Feng, Q.-Y. Li, Preparation and application of polyaniline doped with different sulfonic acids for supercapacitor, Wuli Huaxue Xuebao/Acta Physico – Chimica Sinica 32 (2016) 474-480.
[104] C.K. Subramaniam, C.S. Ramya, K. Ramya, Performance of EDLCs using Nafion and Nafion composites as electrolyte, J. Appl. Electrochem. 41 (2011) 197-206. https://doi.org/10.1007/s10800-010-0224-5
[105] F. Maita, L. Maiolo, A. Minotti, A. Pecora, D. Ricci, G. Metto, G. Scundurra, G. Giusi, C.Ciofi, G. Fortunato, Ultraflexible Tactile piezoelectric sensor based on low-temperature polycrystalline silicon thin-film transistor technology, IEEE Sens. J. 15 (2015) 3819-3826. https://doi.org/10.1109/JSEN.2015.2399531
[106] S. Hu, E. Euvrard, R. Wang, Study on partial discharge self-attenuation characteristics of a new dry type composite insulation for HV current transformers and bushings, Transmission and Distribution Exposition Conference: 2008 IEEE PES Powering Toward the Future, PIMS 2008, 4517255
[107] W. Yin, P. Irwin, D. Schweickart, Dielectric breakdown of polymeric insulations aged at high temperatures,Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC, 4743713, pp. 537-542. https://doi.org/10.1109/IPMC.2008.4743713
[108] A. Pecora, L. Maiolo, F. Maita, A. Minotti, Flexible PVDF-TrFE pyroelectric sensor driven by polysilicon thin film transistor fabricated on ultra-thin polyimide substrate, Sens. Actuat. A Phys. 185 (2012) 39-43.
[109] C.R.S. Rodrigues, C.A.S. Alves, J. Puga, A.M. Pereira, J.O. Ventura, Triboelectric driven turbine to generate electricity from the motion of water, Nano Energy 30 (2016) 379-386. https://doi.org/10.1016/j.nanoen.2016.09.038
[110] A. Jabbarnia, W.S. Khan, A. Ghazinezami, R. Asmatulu, Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nano fibrous membranes for supercapacitor applications, J. Appl. Polym. Sci. 133 (2016) 43707. https://doi.org/10.1002/app.43707
[111] S. Guha, G. Knotts, N.B. Ukah, Enhanced performance of all organic field-effect transistors and capacitors through choice of solvent, Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2014 , 3, pp. 45-48
[112] S.N. Syahidah, S.R. Majid, Ionic liquid-based polymer gel electrolytes for symmetrical solid-state electrical double layer capacitor operated at different operating voltages, Electrochim. Acta 175 (2015) 184-19. https://doi.org/10.1016/j.electacta.2015.02.215
[113] K. Yu, Y. Niu, Y. Zhou, Y. Bai, H. Wang, Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density, J. Am. Ceram. 96 (2013) 2519-2524. https://doi.org/10.1111/jace.12338
[114] T. Le, Y. Yang, Z. Huang, F. Kang, Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance, J. Power Sources 278 (2015) 683-692. https://doi.org/10.1016/j.jpowsour.2014.12.055
[115] S.N. Syahidah, S.R. Majid, Ionic liquid-based polymer gel electrolytes for symmetrical solid-state electrical double layer capacitor operated at different operating voltages, Electrochim. Acta 175 (2015) 184-190. https://doi.org/10.1016/j.electacta.2015.02.215
[116] A.T. Shaver, K. Yin, H. Borjigin, W. Zhang, S.R. Choudhury, E. Baer, S.J. Mecham, J.S. Riffle, J.E. McGrath, Fluorinated poly(arylene ether ketone)s for high temperature dielectrics, Polymer 83 (2016) 199-204. https://doi.org/10.1016/S0378-7753(03)00606-2
[117] P. Sivaraman, V.R. Hande, V.S. Mishra, Ch. Srinivasa Rao, A.B. Samui, All-solid supercapacitor based on polyaniline and sulfonated poly(ether ether ketone), J. Power Sources 124 (2003) 351-354. https://doi.org/10.1016/S0378-7753(03)00606-2
[118] P. Sivaraman, R.K. Kushwaha, K. Shashidhara, V.R. Hande, A.P. Thakur, A.B. Samui, M.M. Khandpekar, All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone], Electrochim. Acta 55 (2010) 2451-2456. https://doi.org/10.1016/j.electacta.2009.12.009
[119] R. Na, G. Huo, S. Zhang, P. Huo, Y. Du, J. Luan, K. Zhu, G. Wang, A novel poly(ethylene glycol)-grafted poly(arylene ether ketone) blend micro-porous polymer electrolyte for solid-state electric double layer capacitors formed by incorporating a chitosan-based LiClO4 gel electrolyte, J. Mater. Chem. 4 (2016) 18116-18127. https://doi.org/10.1039/C6TA07846J
[120] S. Mukaigawa, T. Aoki, Y. Shimizu, T. Kikkawa, Measurement of copper drift in methylsilses quiazane-methylsilsesquioxane dielectric films, Jpn. J. Appl. Phys. Part 1: Regular Papers and Short Notes and Review Papers 39 (4 B) (2000) 2189-2193.
[121] Z.-C. Wu, C.-C. Wang, R.-G. Wu, Y-L. Liu, P-S. Chen, Z-M. Zhu, M-C. Chen, J-F. Chen, C.-I. Chang, L.-J. Chen, Electrical reliability issues of integrating thin Ta and TaN barriers with Cu and low-κ dielectric, J. Electrochem. Soc. 146 (1999) 4290-4297. https://doi.org/10.1149/1.1392629
[122] C. Constantinescu, L. Rapp, P. Rotaru, P. Delaporte, A.P. Alloncle, Polyvinylphenol (PVP) micro capacitors printed by laser-induced forward transfer (LIFT): Multilayered pixel design and thermal analysis investigations J. Appl. Phy 49 (2016) 155301.
[123] Y. Zhao, X. Hao, M. Li, Dielectric properties and energy-storage performance of (Na 0.5Bi0.5)TiO3 thick films, J. Alloys Compd. 601 (2014) 112-115. https://doi.org/10.1016/j.jallcom.2014.02.137
[124] X. Wu, Q. Wang, W. Zhang, Y. Wang, W. Chen, Preparation of all-solid-state supercapacitor integrated with energy level indicating functionality, Synth. Met. 220 (2016) 494-501. https://doi.org/10.1016/j.jallcom.2014.02.137
[125] P. Huo, Y. Liu, R. Na, X. Zhang, S. Zhang, G. Wang, Quaternary ammonium functionalized poly(arylene ether sulfone)/poly(vinylpyrrolidone) composite membranes for electrical double-layer capacitors with activated carbon electrodes, J. Memb. Sci. 505 (2016) 148-156. https://doi.org/10.1016/j.memsci.2016.01.025
[126] Y. Liu, E. Kim, J.I. Han, Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices, Electron. Mater. Lett. 12 (2016) 186-196. https://doi.org/10.1007/s13391-015-5239-y
[127] H.S. Yang, B.J. Kang, J.H. Oh, control of evaporation behavior of an inkjet-printed dielectric layer using a mixed-solvent system, J. Electron. Mater. 45 (2016) 755–763. https://doi.org/10.1007/s11664-015-4196-4
[128] G. McKerricher, J.G. Perez, A, Shamim, Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias, IEEE Trans. Electron Dev. 62 (2015) 1002-1009. https://doi.org/10.1109/TED.2015.2396004
[129] C. Ramasamy, J.P.Del Val, M. Anderson, An electrochemical cell study on polyvinylpyrrolidine aqueous gel with glycol addition for capacitor applications, Electrochim. Acta 135 (2014) 181-186. https://doi.org/10.1016/j.electacta.2014.04.169
[130] F. Yu, M. Huang, J. Wu, Z. Qiu, L.Fan, J.Lin, Y.Lin, A redox-mediator-doped gel polymer electrolyte applied in quasi-solid-state supercapacitors, J. Appl. Polym. Sci. 131 (2014) 39784. https://doi.org/10.1002/app.39784
[131] H.S.A. Sellam, High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes, ACS Appl. Mater. Interf. 5 (2013) 3875-3883. https://doi.org/10.1021/am4005557
[132] K.H. Choi, A. Ali, H.C. Kim, M.T. Hyun, Fabrication of dielectric poly(4-vinylphenol) thin films by using the electro hydrodynamic atomization technique, J. Korean Phys. Soc. 62 (2013) 269-274. https://doi.org/10.3938/jkps.62.269
[133] J. Rodríguez, E. Navarrete, E.A. Dalchiele, L. Sánchez, J.R. Ramos-Barrado, F. Martín, Polyvinylpyrrolidone-LiClO4 solid polymer electrolyte and its application in transparent thin film supercapacitors, J. Power Sources 237 (2013) 270-276. https://doi.org/10.1016/j.jpowsour.2013.03.043
[134] B. Fei, RA. Wach, H. Mitomo, F. Yoshii, T. Kume, Hydrogel of biodegradable cellulose derivatives: I. Radiation-induced crosslinking of CMC. J. Appl. Polym. Sci. 78 (2000) 278–2783. https://doi.org/10.1002/1097-4628(20001010)78:2%3C278::AID-APP60%3E3.0.CO;2-9
[135] RA. Wach, H. Mitomo, F. Yoshii, T. Kume, Hydrogel of biodegradable cellulose derivatives: II. Effect of some factors on radiation-induced crosslinking of CMC. J. Appl. Polym. Sci. 81 (2001) 3030–3037. https://doi.org/10.1002/app.1753
[136] I. Stepniak, A. Ciszewski Grafting effect on the wetting and electro-chemical performance of carbon cloth electrode and polypropylene separator in electric double layer capacitor. J. Power Sources 195 (2010) 5130–7. https://doi.org/10.1016/j.jpowsour.2010.02.032
[137] D. Sinar, G.K. Knopf, Printed graphene interdigitated capacitive sensors on flexible polyimide substrates, 14th IEEE International Conference on Nanotechnology, IEEE-NANO 2014.
[138] C. Ataman, T. Kinkeldei, G. Mattana, A. V. Quintero, F. Molina-Lopez, J. Courbat, K. Cherenack, D. Briand, G. Tröster, N.F.De Rooij, A robust platform for textile integrated gas sensors, Sens. Actuat. B Chem. 177 (2013) 1053-1061. https://doi.org/10.1016/j.snb.2012.11.099
[139] S. Couderc, O. Ducloux, B.J. Kim, T. Someya, A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet, J. Micromech. Microeng. 19 (2009) 055006.
[140] G. Chitnis, T. Maleki, B. Samuels, L.B. Cantor, B. Ziaie, A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring, IEEE Trans. Biomed. Eng. 60 (2013) 250-256. https://doi.org/10.1109/TBME.2012.2205248
[141] M.A. Hudspeth, T.Kaya, Collagen as a humidity sensing dielectric material, Materials Research Society Symposium Proceedings,1427 (2012) 74-79. https://doi.org/10.1557/opl.2012.1415