Activated Carbon/Transition Metal Oxides Thin Films for Supercapacitors


Activated Carbon/Transition Metal Oxides Thin Films for Supercapacitors

F.F.M. Shaikh, S.R. Jadakar, R.K. Kamat, H.M. Pathan

A supercapacitor is considered as the device capable of alleviating the current energy crisis. These devices are classified as Electric Double Layer Capacitor (EDLCs), pseudo-capacitor or hybrid supercapacitor. Hybrid devices cover larger surface area, higher specific capacitance, stability, better electrical conductivity, etc. This chapter presents a brief analysis of different metal oxide/hydroxide along with activated carbon as a composite material or as an anode or cathode material for supercapacitors.

Energy Storage Device, Supercapacitor, Electric Double Layer Capacitor (EDLCs), Pseudo-capacitor, Hybrid Supercapacitor, Activated Carbon, Transition Metal Oxide

Published online 2/25/2018, 30 pages


Part of Electrochemical Capacitors

[1] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials 7 (2008) 845-854.
[2] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P-L. Taberna, C. P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors, Nature Energy 1 (2016) 16070.
[3] S.Chu, A.Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488 (2012) 294−303.
[4] A. Shukla, Electrochemical Power Sources – Fuel Cells and Supercapacitors, Resonance 6 (8) (2001) 72–81.
[5] J. R. Miller, A. F. Burke, Electrochemical capacitors: challenges and opportunities for real-world applications, Electrochem. Soc. Interface Spring 17 (2008) 53-57.
[6] L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531.
[7] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, Journal of Power Sources 195 (2010) 7880–7903.
[8] H. V. Helmholtz, Ann. Phys. (Leipzig), 1853, 89, 211.
[9] D. L. Chapman, Philos. Mag., 1913, 6, 475.
[10] G. Gouy, J. Phys., 1910, 4, 457.
[11] O. Stern, Z. Electrochem., 1924, 30, 508.
[12] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313 (2006)1760–1763.
[13] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937–950.
[14] A. V. Neimark, Y. Lin, P. I. Ravikovitch, M. Thommes, Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons, Carbon 47 (2009) 1617–1628.
[15] C. Merlet, B. Rotenberg, P. A. Madden, P-L. Taberna, P. Simon, Y. Gogotsi, M. Salanne, On the molecular origin of supercapacitance in nanoporous carbon electrode, Nature Mater. 11 (2012)306–310.
[16] E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9 (2007) 1774-1785.
[17] J. Huang, B. G. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes, Chem. Eur. J. 14 (2008) 6614– 6626.
[18] E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes, Carbon 44 (2006) 2498 –2507.
[19] W. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, WIREs Energy Environ. 3 (2014) 424–473.
[20] S.G. Lee, Functionalized imidazolium salts for task specific ionic liquids and their applications, Chem Commun, 10 (2006) 1049–1063.
[21] M Galinski, A Lewandowski, I Stepniak, Ionic liquids as electrolytes, Electrochim. Acta 51 (2006) 5567–5580.
[22] S. Pandey, Analytical applications of room-temperature ionic liquids: A review of recent efforts, Anal. Chim. Acta 556 (2006) 38–45.
[23] M. Zhi, C. Xiang, J.Li, M. Li, N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: A review, Nanoscale 5 (2013) 72–88.
[24] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publisher, New York, 1999.
[25] K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science 312 (2006) 885-888.
[26] M. Toupin, T. Brousse, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16 (2004) 3184–3190.
[27] S. H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, H. K. Liu, Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries, Angew. Chem. Int. Ed. 45 (2006) 6896 –6899.
[28] U. M. Patil, R. R. Salunkhe, K. V. Gurav, C. D. Lokhande, Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Appl. Surf. Sci. 255 (2008) 2603–2607.
[29] D. L. Yan, Z. L. Guo, G. S. Zhu, Z. Z. Yu, H. R. Xu, A. B. Yu, MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor, J. Power Sources 199 (2012) 409–412.
[30] T. Lu, Y. P. Zhang, H. B. Li, L. K. Pan, Y. L. Li, Z. Sun, Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors, Electrochim. Acta 55 (2010) 4170–4173.
[31] R. Z. Li, X. Ren, F. Zhang, C. Du, J. P. Liu, Synthesis of Fe3O4@SnO2 core–shell nanorod film and its application as a thin-film supercapacitor electrode, Chem. Commun. 48 (2012) 5010–5012.
[32] B. R. Duan, Q. Cao, Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application, Electrochim. Acta 64 (2012) 154–161.
[33] X. Y. Chen, E. Pomerantseva, P. Banerjee, K. Gregorczyk, R. Ghodssi, G. Rubloff, Ozone-based atomic layer deposition of crystalline V2O5 films for high performance electrochemical energy storage, Chem. Mater. 24 (2012) 1255– 1261.
[34] X. Sun, M. Xie, G. K. Wang, H. T. Sun, A. S. Cavanagh, J. J. Travis, S. M. George, J. Lian, Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors, J. Electrochem. Soc. 159 (2012) A364–A369.
[35] J. S. Shaikh, R. C. Pawar, R. S. Devan, Y. R. Ma, P. P. Salvi, S. S. Kolekar, P. S. Patil, Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid, Electrochim. Acta 56 (2011) 2127–2134.
[36] X. B. Ren, H. Y. Lu, H. B. Lin, Y. N. Liu, Y. Xing, Preparation and characterization of the Ti/IrO2/WO3 as supercapacitor electrode materials, Russ. J. Electrochem. 46 (2010) 77–80.
[37] P. M. Kulal, D. P. Dubal, C. D. Lokhande, V. J. Fulari, Chemical synthesis of Fe2O3 thin films for supercapacitor application, J. Alloys Compd. 509 (2011) 2567–2571.
[38] P. Lu, D. Xue, H. Yang, Y. Liu, Supercapacitor and nanoscale research towards electrochemical energy storage Int. J. Smart Nano Mater. 1 (2012) 1–25.
[39] X. Y. Lang, A. Hirata, T. Fujita, M. W. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (2011) 232–236.
[40] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.
[41] G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries, Adv. Mater. 19 (2007) 2336–2340.
[42] C. C. Hu, W. C. Chen, K. H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151 (2004) A281−A290.
[43] P.-C. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes, ACS Nano 4 (2010) 4403-4411.
[44] V. Khomenko, E. Raymundo-Pi-ero, F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, Journal of Power Sources 153 (2006) 183-190.
[45] T. Brousse, P.-L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, Journal of Power Sources, 173 (2007) 633-641.
[46] S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y.S. Horn, carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors, ACS Nano 4 (2010) 3889 –3896.
[47] Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring Hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater. 20 (2010) 3595-3602.
[48] Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon 49 (2011) 573−580.
[49] C. D. Lokhande, D. P. Dubal, O. S. Joo, Metal oxide thin film based supercapacitors, Curr. Appl. Phys. 11 (2011) 255-270.
[50] I. Pi-eiro-Prado, D. Salinas-Torres, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Design of activated carbon/activated carbon asymmetric capacitors, Frontiers in Materials (2016) doi: 10.3389/fmats.2016.00016.
[51] V. Khomenko, E. Raymundo-Pinero, F. Beguin, High-energy density graphite/AC capacitor in organic electrolyte, Journal of Power Sources 177 (2008) 643–651.
[52] G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148 (2001) A930–A93.
[53] H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, NJ, USA, 1993.
[54] D.O. Cooney, Activated Charcoal: Antidotal and other Medical Uses, New York: Dekker; 1980.
[55] A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11–27.
[56] F.S. Baker, C.E. Miller, E.D. Repik. Kirk-Othme, Encyclopedia of Chemical Technology, New York: John Wiley, 4. 4 (1992) 1015–1037.
[57] R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York, 1988 (Chapter 2).
[58] D Lozano-Castello, D Cazorla-Amoros, A Linares-Solano, S Shiraishi, H Kurihara, A Oya, Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte, Carbon 41(2003) 1765–1775.
[59] G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Carbon electrodes for double‐layer capacitors i. relations between ion and pore dimensions, J. Electrochem. Soc. 147 (2000) 2486-2493.
[60] M. Zhu, C. J. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, A. M. Bittner, Factors affecting the size and deposition rate of the cathode deposit in an anodic arc used to produce carbon nanotubes, Carbon 46 (2008) 1826-1828.
[61] L. Weinstein, R. Dash, Supercapacitor carbons, Mater. Today 16 (2013) 356–357.
[62] X. He, P. Ling, M. Yu, X. Wang, X. Zhang, M. Zheng, Rice husk-derived porouscarbons with high capacitance by ZnCl2 activation for supercapacitors, Electrochim. Acta 105 (2013) 635–641.
[63] M. Wu, P. Ai, M. Tan, B. Jiang, Y. Li, J. Zheng, W. Wu, Z. Li, Q. Zhang, X. He, Synthesis of starch-derived mesoporous carbon for electric double layer capacitor, Chem. Eng. J. 245 (2014) 166–172.
[64] J. Xua, L. Chena, H. Qua, Y. Jiaoa, J. Xiea, G. Xing, Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4, Appl. Surf. Sci. 320 (2014) 674–680.
[65] E. Frackowiak, Q. Abbas, F. Béguin, Carbon/carbon supercapacitors, J. Energy Chem. 22 (2013) 226–240.
[66] A. Mestre, E. Tyszko, M. Andrade, M. Galhetas, C. Freire, A. Carvalho, Sustainable activated carbons prepared from a sucrose-derived hydrochar: Remarkable adsorbents for pharmaceutical compounds, RSC Adv. 5 (2015) 19696–19707.
[67] A.T. Mohd Din, B. Hameed, A.L. Ahmad, Batch adsorption of phenol onto physiochemical-activated coconut shell, J. Hazard. Mater. 161 (2009) 1522–1529.
[68] M. Nawa, T. Nogami, H. Mikawa, Application of activated carbon fiber fabrics to electrodes of rechargeable battery and organic electrolyte capacitor, j. Electrochem. Soc. 131 (1984) 1457-1459.
[69] A. Yoshida,I. Tanahashi, Y. Takeuchi, A. Nishino, An electric double-layer capacitor with activated carbon fiber electrodes, IEEE Trans. Compon. Hybrids Manuf. Technol. 10 (1987) 100-102.
[70] M. Nakamura, M. Nakanishi, K. Yamamoto, Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors, J. Power Sources 60 (1996) 225-231.
[71] M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, M. S. Dresselhaus, capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes, J. Electrochem. Soc. 148 (2001) A910-A914.
[72] A. Yoshida, S. Nonaka, I. Aoki, A. Nishino, Electric double-layer capacitors with sheet-type polarizable electrodes and application of the capacitors, J. Power Sources 60 (1996) 213-218.
[73] H. Yang, M. Yoshio, K. Isono, R. Kuramoto, Improvement of commercial activated carbon and its application in electric double layer capacitors, Electrochem. Solid State Lett. 5 (2002) A141-A144.
[74] T. M. Alslaibi, I. Abustan, M.A. Ahmad, A. A. Foul, A review: production of activated carbon from agricultural byproducts via conventional and microwave heating, J. Chem. Technol. Biotechnol. 88 (2013) 1183–1190.
[75] G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, E. Frackowiak, Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta 50 (2005) 1197–1206.
[76] H. Marsh, Activated Carbon Compendium: A Collection of Papers from the Journal Carbon 1996–2000, Elsevier; 2001, Gulf Publishing, Texas, USA.
[77] V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B.Q. Wei, Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C 111 (2007) 7527–7531.
[78] Q.Y. Li, H.Q. Wang, Q.F. Dai, J.H. Yang, Y.L. Zhong, Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch, Solid State Ionics 179 (2008) 269–273.
[79] L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon 49 (2011) 4830–4838.
[80] L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes, Adv. Energy Mater. 1 (2011) 356–361.
[81] T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z.H. Zhu, G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources 195 (2010) 912–918.
[82] B Xu, Y.F. Chen, G. Wei, G.P. Cao, H. Zhang, Y.S. Yang, Activated carbon with high capacitance prepared by NaOH activation for supercapacitors, Mater. Chem. Phys. 124 (2010) 504–509.
[83] D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte, Carbon 41 (2003) 1765–1775.
[84] R Wang, P.Y. Wang, X.B. Yan, J.W. Lang, C. Peng, Q.J. Xue, Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance, ACS Appl. Mater. Interf. 4 (2012) 5800–5806.
[85] L.G. Juntao Zhang, S. Kang, J. Jianchun, Z. Xiaogang, Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application, J. Solid State Electrochem. 16 (2012) 2179.
[86] Z. Li, L. Zhang, B.S. Amirkhiz, X.H. Tan, Z.W. Xu, H.L. Wang, B.C. Olsen, C.M. Holt, D. Mitlin, Carbonized chicken eggshell membranes with 3d architectures as high-performance electrode materials for supercapacitors, Adv Energy Mater. 2 (2012) 431–437.
[87] G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, Effect of nitrogen in carbon electrode on the supercapacitor performance, Chem. Phys. Lett. 404 (2005) 53–58.
[88] J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater. 18 (2006) 2073–2094.
[89] M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu, T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon 46 (2008) 1475–1488.
[90] K. Jurewicz, K. Babeł, A. Z´io´łkowski, H. Wachowska, Ammoxidation of active carbons for improvement of supercapacitor characteristics, Electrochim. Acta 48 (2003) 1491–1498.
[91] H. Guo, Q. Gao, Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor, J. Power Sources 186 (2009) 551–556.
[92] V.V.N. Obreja, On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review, Physica E 40 (2008) 2596–2605.
[93] F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Berlin, Germany: Wiley- VCH; 2013.
[94] G. Hasegawa, Monolithic electrode for electric double layer capacitors based on macro/meso/microporous S-Containing activated carbon with high surface area, J. Mater. Chem. 21 (2011) 2060–2063.
[95] D. Carriazo, F. Pico, M.C. Gutierrez, F. Rubio, J.M. Rojo, F. Monte, Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 773-780.
[96] C. Kim, Electrochemical characterization of electrospun activated carbon nano fibres as an electrode in supercapacitors, J Power Sources, 142 (2005) 382–388.
[97] K.S. Hung, C. Masarapu, T.H. Ko, B.Q. Wei, Wide temperature range operation supercapacitors from nanostructured activated carbon fabric, J. Power Sources 193 (2009) 944–949.
[98] Q. Zhang, J.P. Rong, D.S. Ma, B.Q. Wei, The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes, Energy Environ. Sci. 4 (2011) 2152–2159.
[99] P. Ratajczak, K. Jurewicz, F. Be´guin, Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte, J. Appl. Electrochem. 44 (2014) 475–480.
[100] V. D. Patake, C. D. Lokhande, O. S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, Appl. Surf. Sci. 255 (2009) 4192–4196.
[101] V. B. Kumar, A. Borenstein, B. Markovsky, D. Aurbach, A. Gedanken, M. Talianker, Z. Porat, Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors, J. Phys. Chem. C 120 (2016) 13406−13413.
[111] A. Davies, A. Yu, Material Advancements in Supercapacitors: From activated carbon to carbon nanotube and graphene, The Canadian Journal Of Chemical Engineering 89 (2011) 1342-1357.
[112] B. K Ostafiychuk, I. M Budzulyak, B. I Rachiy, V.M Vashchynsky, V. I Mandzyuk, R. P Lisovsky, L. O Shyyko, Thermochemically activated carbon as an electrode material for supercapacitors, Nanoscale Research Letters 10 (2015) 65.
[113] B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy Environ. Sci. 9 (2016) 102-106.
[114] J. Su’arez-Guevara, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon–phosphotungstate hybrid materials, J. Mater. Chem. A 2 (2014) 1014–1021.
[115] I. I. Gurten Ina, S. M. Holmes, A. Banford, Z. Aktasa, The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl. Surf. Sci. 357 (2015) 696–703.
[116] M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y.Han, G. Xu, Z. Liu, L.Zhang, Preparation of activated carbon from cotton stalk and its application in supercapacitor, J. Solid State Electrochem. 17 (2013) 1005–1012.
[117] Y. Jang, J. Jo, Y-M Choi, I. Kim, S-H. Lee, D. Kim, S. M. Yoon, Activated carbon nanocomposite electrodes for high performance supercapacitors, Electrochimica Acta 102 (2013) 240– 245.
[118] T. Adinaveen, L. J. Kennedy, J. J. Vijaya, G. Sekaran, Surface and porous characterization of activated carbon prepared from pyrolysis of biomass (rice straw) by two-stage procedure and its applications in supercapacitor electrodes, J. Mater. Cycles Waste Manag. 17 (2015) 736–747.
[119] Y. Huang, S. L. Candelaria, Y. Li, Z. Li, J. Tian, L. Zhang, G. Cao, Sulfurized activated carbon for high energy density supercapacitors, J. Power Sources 252 (2014) 90-97.
[120] J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang, Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor, J. Electrochem. Soc. 148 (2001) A1362-A1367.
[121] T. Nanaumi, Y. Ohsawa, K. Kobayakawa, Y. Sato, High energy electrochemical capacitor materials prepared by loading ruthenium oxide on activated carbon for supercapacitor, Electrochem. 70 (2002) 681-685.
[122] M. S. Dandekar, G. Arabale, K. Vijayamohanan, Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors, J. Power Sources 141 (2005) 198–203.
[123] W-C. Chen, C-C. Hu, C-C. Wang, C-K. Min, Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors, J. Power Sources 125 (2004) 292–298.
[124] C-C. Wang, C-C. Hu, Electrochemical catalytic modification of activated carbon fabrics by ruthenium chloride for supercapacitors, Carbon 43 (2005) 1926–1935.
[125] J.M. Sieben, E. Morallón, D. Cazorla-Amorós, Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods, Energy 58 (2013) 519-526.
[126] M. Ramani, B. S. Haran, R. E. White, B. N. Popov, L. Arsov, Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide, J. Power Sources 93 (2001) 209-214.
[127] B-H. Kima, C. H. Kimb, D. G. Le, Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors, J. Electroanal. Chem. 760 (2016) 64–70.
[128] C-C. Hu, W-C. Chen, Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors, Electrochimica Acta 49 (2004) 3469–3477.
[129] H. Lee, S. H. Park, S-J. Kim, Y-K. Park, B-J. Kim, K-H. An, S. J. Ki, S-C. Jung, Synthesis of manganese oxide/activated carbon composites for supercapacitor application using a liquid phase plasma reduction system, Int. J. Hyd. Ener. 40 (2015) 754–759.
[130] Y. Zhang, Q. Yao, H. Gao, L. Wang, X. Jia, A. Zhang, Y. Song, T. Xia, H. Dong, Facile synthesis and electrochemical performance of manganese dioxide doped by activated carbon, carbon nanofiber and carbon nanotube, Powder Tech. 262 (2014) 150–155.
[131] Y. Jang, J. Jo, H. Jang, I. Kim, D. Kang, K-Y. Kim, Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors, Appl. Phys. Lett. 104 (2014) 243901.
[132] J. M. Koa, K.M. Kim, Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys. 114 (2009) 837–841.
[133] J-W. Wang, Y. Chen, B-Z. Chen, A Synthesis Method of MnO2/Activated Carbon Composite for Electrochemical Supercapacitors, J. Electrochem. Soc. 8 (2015) A1654-A1661.
[134] Y. Qiu, P. Xu, B. Guo, Z. Cheng, H. Fan, M. Yang, X. Yang, J. Li, Electrodeposition of manganese dioxide film on activated carbon paper and application for supercapacitor with high rate capability, RSC Adv. 4 (2014) 64187-64192.
[135] M. Selvakumar, D. K. Bhat, Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor, Appl. Surf. Sci. 263 (2012) 236–241.
[136] J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode, Electrochem. Solid-State Lett. 5 (2002) H7-H10.
[137] M-S. Wu, K-H. Lin, Step electrophoretic deposition of ni-decorated activated-carbon film as an electrode material for supercapacitors, J. Phys. Chem. C 114 (2010) 6190–6196.
[138] T. M. Masikhwa, J. K. Dangbegnon, A. Bello, M. J. Madito, D. Momodu, N. Manyala, Preparation and electrochemical investigation of the cobalt hydroxide carbonate/activated carbon nanocomposite for supercapacitor applications, J. Phys. Chem. Solids 88 (2016) 60–67.
[139] C. H. Kim, B-H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes, J. Power Sour. 274 (2015) 512-520.
[140] M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer, G. Sravani, Nano ZnO activated carbon composite electrodes for supercapacitors, Phys. B 405 (2010) 2286-2289.
[141] B. H. Kim, K. S. Yang, D. J. Yang, Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors, Electrochimica Acta 109 (2013) 859–865.
[142] X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu, J. Shen, The bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors, ACS Appl. Mater. Interfaces 6 (2016) 3776–3783.
[143] Q. Wang, Y. Zou, C. Xiang, H. Chu, H. Zhang, F. Xu, L. Sun, C. Tang, High-performance supercapacitor based on V2O5/carbon nanotubes-super activated carbon ternary composite, Ceram. Int. 42 (2016) 12129–12135.
[144] W. Sugimoto, T. Ohnuma, Y. Murakami, Y. Takasu, Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors, Electrochem. Solid-State Lett. 9 (2001) A145-A147.
[145] M. Zhong, Y. Song, Y. Li, C. Ma, X. Zhai, J. Shi, Q. Guo, L. Liu, Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application, J. Power Sources 217 (2012) 6-12.
[146] M. Ates, D. Cinar, S. Caliskan, U. Gecgel, O. Uner, Y. Bayrak, I. Candan, Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors, J. Fullerenes, Nanotubes and Carbon Nanostructures 24 (2016) 427-434.
[147] M. Enterría, F.J. Martín-Jimeno, F. Suárez-García, J.I. Paredes, M.F.R. Pereira, J.I. Martins, A. Martínez-Alonso, J.M.D. Tascón, J.L. Figueiredo, Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids, Carbon 105 (2016) 474–483.
[148] M.Y. Ho, P.S. Khiew, Heat-treated Fe3O4—activated carbon nanocomposite for high performance electrochemicalcapacitor, Adv. Mater. Res. 894 (2014) 349–354.
[149] P. He, K. Yang, W. Wang, F. Dong, L. Du, H. Liu, Nanosized Fe3O4-modified activated carbon for supercapacitor electrodes. Russ. J. Electrochem. 49 (2013) 354–358.
[150] I. Oh, M. Kim, J. Kim, Controlling hydrazine reduction to deposit iron oxides on oxidized activated carbon for supercapacitor application, Energy 86 (2015) 292-299.
[151] Q. Tan, Y. Xu, J. Yang, L. Qiu, Y. Chen, X. Chen, Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors, Electrochimica Acta 88 (2013) 526– 529.
[152] H. Liu, P. He, Z. Li, Y. Liu, J. Li, A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte, Electrochimica Acta 51 (2006) 1925–193.
[153] H. G. Jung, N. Venugopal, B. Scrosati, Y. K. Sun, A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode, J. Power Sources 221 (2013) 266-271.
[154] K. Karthikeyana, V. Aravindanb, S. B. Leea, I.C. Janga, H. H. Lima, G. J. Parkc, M. Yoshioc, Y. S. Lee, A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes, J. Alloy Comp. 504 (2010) 224–227.
[155] Q. Qu, L. Li , S. Tian, W. Guo, Y. Wu, R. Holze, A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O, J. Power Sources 195 (2010) 2789–2794.
[156] P. C. Gao, A. H. Lu, W. C. Li, Dual functions of activated carbon in a positive electrode for MnO2-based hybrid supercapacitor, J. Power Sources 196 (2011) 4095–4101.
[157] M. Kim, Y. Hwang, K. Min, J. Kim, Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors, Electrochimica Acta 113 (2013) 322–331.
[158] Z. Lin, X. Yan, J. Lang, R. Wang, L-B. Kong, Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods, J. Power Sourc. 279 (2015) 358-364.
[159] G. Godillot, P-L. Taberna, B. Daffos, P. Simon, C. Delmas, L. Guerlou-Demourgues, High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide, J. Power Sourc. 331 (2016) 277-284.
[160] L-J. Xie, J-F. Wu, C-M. Chen , C-M Zhang,, L. Wan, J-L Wang, Q-Q. Kong, C-X. Lv, K-X. Li, G-H. Sun, A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode, J. Power Sourc. 242 (2013) 148-156
[161] Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, J. Power Sourc. 194 (2009) 1222–1225.
[162] K. Karthikeyan, V. Aravindan, S.B. Lee, I.C. Jang, H.H. Lim, G.J. Park, M. Yoshio, Y.S. Lee, A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes, J. Alloy. Comp. 504 (2010) 224–227.
[163] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors, J. Phys. Chem. C 113 (2009) 14020-14027.
[164] C. Xu, H. Du, B. Li, F. Kang, Y. Zeng, Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations, J. Electrochem. Soc. 156 (2009) A435-A441.
[165] A. Yuan , Q. Zhang, A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte, Electrochem. Comm. 8 (2006) 1173–1178.
[166] T. Brousse, M. Toupin, D. Be’langer, A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem. Soc. 4 (2004) A614-A622.
[167] H-Q. Wang, Z-S. Li, Y-G. Huang, Q-Y. Li, X-Y. Wang, A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte, J. Mater. Chem. 20 (2010) 3883-3889.
[168] S. Nohara, T. Asahina, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura, Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte, J. Power Sourc. 157 (2006) 605-609.
[169] H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun. 4 (2013) 1894.
[170] G.-H. Yuan, Z.-H. Jiang, A. Aramata, Y.-Z. Gao, Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide, Carbon 43 (2005) 2913-2917.
[171] V. Ganesh, S. Pitchumani, V. Lakshminarayanan, New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon, J. Power Sourc. 158 (2006) 1523–1532.
[172] J-W. Lang, L-B. Kong, M. Liu, Y-C. Luo, L. Kang, Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon, J Solid State Electrochem. 14 (2010) 1533–1539.
[173] L.B. Kong, M. Liu, J.W. Lang, Y.C. Luo, L. Kang, Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon, J. Electrochem. Soc. 156 (2009) A1000-A1004.
[174] L-B. Kong, M. Liu, J-W. Lang, Y-C. Luo, L. Kang, Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon, J. Electrochem. Soc. 12 (2009) A1000-A1004.
[175] F. Zhou, Q. Liu, J. Gu, W. Zhang, D. Zhang, A facile low-temperature synthesis of highly distributed and size-tunable cobalt oxide nanoparticles anchored on activated carbon for supercapacitors, J. Power Sourc. 273 (2015) 945-953.
[176] Z. Lin, X. Yan, J. Lang, R. Wang, L-B. Kong, Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods, J. Power Sourc. 279 (2015) 358-364.
[177] L-M. Chen, Q-Y. Lai, Y-J. Hao, Y. Zhao, X.Y. Ji, Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloy. Comp, 467 (2009) 465–471.
[178] L-Q. Fan, G-J. Liu, J-H. Wu, L. Liu, J-M. Lin, Y-L. Wei, Asymmetric supercapacitor based on graphene oxide/polypyrrolecomposite and activated carbon electrodes, Electrochimica Acta 137 (2014) 26–33.
[179] Z. Fan, J. Yan , T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/mno2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 21 (2011) 2366–2375.
[180] Y-G. Wang, Z-D. Wang, Y-Y. Xia, An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes, Electrochimica Acta 50 (2005) 5641–5646.
[181] M. Kim, J. Kim, Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors, Phys. Chem. Chem. Phys. 16 (2014) 11323-11336.
[182] X. Wang, C. Yan, A. Sumboja, P. S. Lee, High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor, Nano Energy 3 (2014) 119–126.
[183] Y-g. Wang, Y-y. Xia, A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system, Electrochem. Comm. 7 (2005) 1138-1142.
[184] Y-Y Liang, H-L Li, X-G Zhang, A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes, Mater. Sci. Eng. A 473 (2008) 317–322.
[185] L-Q. Fan, G-J. Liu, J-H. Wu, L. Liu, J-M. Lin, Y-L. Wei, Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes, Electrochimica Acta 137 (2014) 26–33.
[186] D. Xuan, W. Chengyang, C. Mingming, J. Yang, W. Jin, Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution, J. Phys. Chem. C 113 (2009) 2643–2646.