Graphene-based supercapacitor: Fabrication and their properties

$20.00

Graphene-based supercapacitor: Fabrication and their properties

Jin-Gang Yu

As one-atom thick layer with two-dimensional (2D) architecture, graphene has emerged as an efficient capacitor electrode material for electrochemical energy storage due to its excellent properties such as high electrical conductivity, superior chemical stability, and extensive surface area. However, graphene tends to aggregate when prepared by the chemical reduction method due to the inter-sheets van der Waals interaction. To prevent the aggregation of graphene and improve its electrochemical performance, various materials such as metal compounds, polymers, and carbonaceous materials were doped into graphene to fabricate novel graphene-based hybrids, which showed excellent capacitive properties and high stability. Therefore, these graphene-based supercapacitor electrode materials are hoped to have great prospect as future supercapacitors.

Keywords
Graphene, Composites, Supercapacitor, Fabrication

Published online 1/15/2018, 25 pages

DOI: http://dx.doi.org/10.21741/9781945291531-1

Part of Nanocomposites for Electrochemical Capacitors

References
[1] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498-3502.https://doi.org/10.1021/nl802558y
[2] J. Tersoff, Contact resistance of carbon nanotubes, Appl. Phys. Lett. 74 (1999) 2122-2124.https://doi.org/10.1063/1.123776
[3] G.X. Qu, J.L. Cheng, X.D. Li, D.M. Yuan, P.N. Chen, X.L. Chen, B. Wang, H.S. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode, Adv. Mater. 28 (2016) 3646-3652.https://doi.org/10.1002/adma.201600689
[4] J. Xu, Z.Q. Tan, W.C. Zeng, G.X. Chen, S.L. Wu, Y. Zhao, K. Ni, Z.C. Tao, M. Ikram, H.X. Ji, Y.W. Zhu, A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes, Adv. Mater. 28 (2016) 5222-5228.https://doi.org/10.1002/adma.201600586
[5] Y. Zhang, Q.H. Zou, H.S. Hsu, S. Raina, Y.X. Xu, J.B. Kang, J. Chen, S.Z. Deng, N.S. Xu, W.P. Kang, Morphology effect of vertical graphene on the high performance of supercapacitor electrode, ACS Appl. Mater. Inter. 8 (2016) 7363-7369.https://doi.org/10.1021/acsami.5b12652
[6] Z.H. Wang, J.Y. Yang, X.W. Wu, X.Q. Chen, J.G. Yu, Y.P. Wu, Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material, J. Nanopart. Res. 19 (2017) 77.https://doi.org/10.1007/s11051-017-3778-x
[7] K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192-200.https://doi.org/10.1038/nature11458
[8] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.https://doi.org/10.1126/science.1102896
[9] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. nanotechnol. 3 (2008) 563-568.https://doi.org/10.1038/nnano.2008.215
[10] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814.https://doi.org/10.1021/nn1006368
[11] W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon 48 (2010) 1146-1152.https://doi.org/10.1016/j.carbon.2009.11.037
[12] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets, Chem. Mater. 21 (2009) 3514-3520.https://doi.org/10.1021/cm901247t
[13] W. Chen, L. Yan, Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure, Nanoscale 2 (2010) 559-563.https://doi.org/10.1039/b9nr00191c
[14] F. Cataldo, G. Compagnini, G. Patané, O. Ursini, G. Angelini, P.R. Ribic, G. Margaritondo, A. Cricenti, G. Palleschi, F. Valentini, Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes, Carbon 48 (2010) 2596-2602.https://doi.org/10.1016/j.carbon.2010.03.063
[15] M. Segal, Selling graphene by the ton, Nat. Nanotechnol. 4 (2009) 612.https://doi.org/10.1038/nnano.2009.279
[16] U.M. Patil, J.S. Sohn, S.B. Kulkarni, H.G. Park, Y. Jung, K.V. Gurav, J.H. Kim, S.C. Jun, A facile synthesis of hierarchical MnO2 nanofibers on 3D-graphene foam for supercapacitor application, Mater. Lett. 119 (2014) 135-139.https://doi.org/10.1016/j.matlet.2013.12.105
[17] G.Y. Zhu, Z. He, J. Chen, J. Zhao, X.M. Feng, Y.W. Ma, Q.L. Fan, L.H. Wang, W. Huang, Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode, Nanoscale 6 (2014) 1079-1085.https://doi.org/10.1039/C3NR04495E
[18] J.N. Hao, Y.Y. Zhong, Y.Q. Liao, D. Shu, Z.X. Kang, X.P. Zou, C. He, S.T. Guo, Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene, Electrochim. Acta 167 (2015) 412-420.https://doi.org/10.1016/j.electacta.2015.03.098
[19] H.L. Li, Y. He, V. Pavlinek, Q.L. Cheng, P. Saha, C.Z. Li, MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes, J. Mater. Chem. A 3 (2015) 17165-17171.https://doi.org/10.1039/C5TA04008F
[20] F. Gao, J.Y. Qu, Z.B. Zhao, Q. Zhou, B.B. Li, J.S. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application, Carbon 80 (2014) 640-650.https://doi.org/10.1016/j.carbon.2014.09.008
[21] H.Y. Zhang, Z.D. Huang, Y.Y. Li, Y.M. Chen, W.G. Wang, Y.P. Ye, P. Deng, Microwave-assisted in situ synthesis of reduced graphene oxide/Mn3O4 composites for supercapacitor applications, RSC Adv. 5 (2015) 45061-45067.https://doi.org/10.1039/C5RA05946A
[22] K.M. Zhao, K.Z. Lyu, S.Q. Liu, Q.M. Gan, Z. He, Z. Zhou, Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal-organic frameworks for supercapacitor electrodes, J. Mater. Sci. 52 (2017) 446-457.https://doi.org/10.1007/s10853-016-0344-3
[23] G.L. Guo, L. Huang, Q.H. Chang, L.C. Ji, Y. Liu, Y.Q. Xie, W.Z. Shi, N.Q. Jia, Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexible PET substrate for supercapacitor, Appl. Phys. Lett. 99 (2011) 083111.https://doi.org/10.1063/1.3629789
[24] A. Bhirud, S. Sathaye, R. Waichal, C.J. Park, B. Kale, In situ preparation of N-ZnO/graphene nanocomposites: Excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode, J. Mater. Chem. A 3 (2015) 17050-17063.https://doi.org/10.1039/C5TA03955J
[25] J. Varghese, S. Jasimudeen, K.T. Varghese, Study of the dielectric properties of graphene/CuS/ZnO hybrid nanocomposites for high performance supercapacitor applications, RSC Adv. 5 (2015) 107142-107149.https://doi.org/10.1039/C5RA20099G
[26] Y.X. Xu, X.Q. Huang, Z.Y. Lin, X. Zhong, Y. Huang, X.F. Duan, One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials, Nano Res. 6 (2013) 65-76.https://doi.org/10.1007/s12274-012-0284-4
[27] H.X. Chang, J.L. Kang, L.Y. Chen, J.L. Wang, K. Ohmura, N. Chen, T. Fujita, H.K. Wu, M.W. Chen, Low-temperature solution-processable Ni(OH)2 ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes, Nanoscale 6 (2014) 5960-5966.https://doi.org/10.1039/C4NR00655K
[28] N. Li, X.K. Huang, R.J. Li, Y.M. Chen, Y.Y. Li, Z.C. Shi, H.Y. Zhang, Pseudocapacitive transparent/flexible supercapacitor based on graphene wrapped Ni(OH)2 nanosheet transparent film produced using scalable bio-inspired methods, Electrochim. Acta 219 (2016) 61-69.https://doi.org/10.1016/j.electacta.2016.09.146
[29] L. Ma, R. Liu, L. Liu, F. Wang, H.J. Niu, Y.D. Huang, Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes, J. Power Sources 335 (2016) 76-83.https://doi.org/10.1016/j.jpowsour.2016.10.006
[30] T.W. Lin, C.S. Dai, K.C. Hung, High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes, Sci. Rep-UK 4 (2014).
[31] C.H. Wu, S.X. Deng, H. Wang, Y.X. Sun, J.B. Liu, H. Yan, Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications, ACS Appl. Mater. Inter. 6 (2014) 1106-1112.https://doi.org/10.1021/am404691w
[32] Q. Li, Q. Wei, L.J. Xie, C.M. Chen, C.X. Lu, F.Y. Su, P.C. Zhou, Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode, RSC Adv. 6 (2016) 46548-46557.https://doi.org/10.1039/C6RA04998B
[33] D.H. Zhang, W.B. Zou, Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials, Int. J. Mater. Res. 106 (2015) 72-74.https://doi.org/10.3139/146.111148
[34] X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano 6 (2012) 3206-3213.https://doi.org/10.1021/nn300097q
[35] L.J. Xie, J.F. Wu, C.M. Chen, C.M. Zhang, L. Wan, J.L. Wang, Q.Q. Kong, C.X. Lv, K.X. Li, G.H. Sun, A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode, J. Power Sources 242 (2013) 148-156.https://doi.org/10.1016/j.jpowsour.2013.05.081
[36] R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead-CNT-graphene nanostructure using microwaves for high-performance supercapacitor electrode, ACS Appl. Mater. Inter. 7 (2015) 15042-15051.https://doi.org/10.1021/acsami.5b04336
[37] A.N. Naveen, P. Manimaran, S. Selladurai, Cobalt oxide (Co3O4)/graphene nanosheets (GNS) composite prepared by novel route for supercapacitor application, J. Mater. Sci-Mater. Electron. 26 (2015) 8988-9000.https://doi.org/10.1007/s10854-015-3582-2
[38] A. Numan, N. Duraisamy, F.S. Omar, Y.K. Mahipal, K. Ramesh, S. Ramesh, Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application, RSC Adv. 6 (2016) 34894-34902.https://doi.org/10.1039/C6RA00160B
[39] Y. Wang, C.X. Guo, J.H. Liu, T. Chen, H.B. Yang, C.M. Li, CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor, Dalton Trans. 40 (2011) 6388-6391.https://doi.org/10.1039/c1dt10397k
[40] M. Vanitha, Keerthi, P. Cao, N. Balasubramanian, Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications, J. Alloy. Compd. 644 (2015) 534-544.https://doi.org/10.1016/j.jallcom.2015.03.221
[41] N. Li, C.Y. Zhi, H.Y. Zhang, High-performance transparent and flexible asymmetric supercapacitor based on graphene-wrapped amorphous FeOOH nanowire and Co(OH)2 nanosheet transparent films produced at air-water interface, Electrochim. Acta 220 (2016) 618-627.https://doi.org/10.1016/j.electacta.2016.10.068
[42] J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes, Carbon 48 (2010) 3825-3833.https://doi.org/10.1016/j.carbon.2010.06.047
[43] Z.P. Li, Y.J. Mi, X.H. Liu, S. Liu, S.R. Yang, J.Q. Wang, Flexible graphene/MnO2 composite papers for supercapacitor electrodes, J. Mater. Chem. 21 (2011) 14706-14711.https://doi.org/10.1039/c1jm11941a
[44] G.H. Yu, L.B. Hu, N.A. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z.A. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett. 11 (2011) 4438-4442.https://doi.org/10.1021/nl2026635
[45] A.P. Yu, A. Sy, A. Davies, Graphene nanoplatelets supported MnO2 nanoparticles for electrochemical supercapacitor, Synthetic Met. 161 (2011) 2049-2054.https://doi.org/10.1016/j.synthmet.2011.04.034
[46] X.C. Dong, X.W. Wang, L. Wang, H. Song, X.G. Li, L.H. Wang, M.B. Chan-Park, C.M. Li, P. Chen, Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode, Carbon 50 (2012) 4865-4870.https://doi.org/10.1016/j.carbon.2012.06.014
[47] C.Y. Chen, C.Y. Fan, M.T. Lee, J.K. Chang, Tightly connected MnO2-graphene with tunable energy density and power density for supercapacitor applications, J. Mater. Chem. 22 (2012) 7697-7700.https://doi.org/10.1039/c2jm16707g
[48] Q.Y. Liao, S.Y. Li, H. Cui, C.X. Wang, Vertically-aligned graphene@Mn3O4 nanosheets for a high-performance flexible all-solid-state symmetric supercapacitor, J. Mater. Chem. A 4 (2016) 8830-8836.https://doi.org/10.1039/C6TA02258H
[49] J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A Facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability, Chem. Mater. 24 (2012) 1158-1164.https://doi.org/10.1021/cm203697w
[50] Y.T. Hu, C. Guan, G.X. Feng, Q.Q. Ke, X.L. Huang, J. Wang, Flexible asymmetric supercapacitor based on structure-optimized Mn3O4/reduced graphene oxide nanohybrid paper with high energy and power density, Adv. Funct. Mater. 25 (2015) 7291-7299.https://doi.org/10.1002/adfm.201503528
[51] G.Z. Jin, X.X. Xiao, S. Li, K.M. Zhao, Y.Z. Wu, D. Sun, F. Wang, Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode, Electrochim. Acta 178 (2015) 689-698.https://doi.org/10.1016/j.electacta.2015.08.032
[52] B.G.S. Raj, R.N.R. Ramprasad, A.M. Asiri, J.J. Wu, S. Anandan, Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications, Electrochim. Acta 156 (2015) 127-137.https://doi.org/10.1016/j.electacta.2015.01.052
[53] M. Mandal, D. Ghosh, K. Chattopadhyay, C.K. Das, A novel asymmetric supercapacitor designed with Mn3O4@multi-wall carbon nanotube nanocomposite and reduced graphene oxide electrodes, J. Electron. Mater. 45 (2016) 3491-3500.https://doi.org/10.1007/s11664-016-4493-6
[54] I.Y.Y. Bu, R. Huang, One-pot synthesis of ZnO/reduced graphene oxide nanocomposite for supercapacitor applications, Mater. Sci. Semicon. Proc. 31 (2015) 131-138.https://doi.org/10.1016/j.mssp.2014.11.037
[55] X.G. Li, Z.K. Wang, Y.F. Qiu, Q.M. Pan, P.A. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes, J. Alloy. Compd. 620 (2015) 31-37.https://doi.org/10.1016/j.jallcom.2014.09.105
[56] Z. Zhang, L. Ren, W.J. Han, L.J. Meng, X.L. Wei, X. Qi, J.X. Zhong, One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor, Ceram. Int. 41 (2015) 4374-4380.https://doi.org/10.1016/j.ceramint.2014.11.127
[57] A. Ramadoss, S.J. Kim, Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications, Mater. Chem. Phys. 140 (2013) 405-411.https://doi.org/10.1016/j.matchemphys.2013.03.057
[58] Y. Haldorai, W. Voit, J.J. Shim, Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid, Electrochim. Acta 120 (2014) 65-72.https://doi.org/10.1016/j.electacta.2013.12.063
[59] W. Li, Y.F. Bu, H.L. Jin, J. Wang, W.M. Zhang, S. Wang, J.C. Wang, The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications, Energy & Fuels, 27 (2013) 6304-6310.https://doi.org/10.1021/ef401190b
[60] X.H. Xia, J.P. Tu, Y.J. Mai, R. Chen, X.L. Wang, C.D. Gu, X.B. Zhao, Graphene sheet/porous NiO hybrid film for supercapacitor applications, Chemistry-A European Journal 17 (2011) 10898-10905.https://doi.org/10.1002/chem.201100727
[61] A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, N. Manyala, Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications, J. Mater. Sci. 48 (2013) 6707-6712.https://doi.org/10.1007/s10853-013-7471-x
[62] K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater. 22 (2010) 1392-1401.https://doi.org/10.1021/cm902876u
[63] M.M. Biswas, Graphene nanosheet supercapacitor achieved high-frequency ac circuit-filtering capacity, Mrs Bull. 35 (2010) 944-944.https://doi.org/10.1557/mrs2010.689
[64] L.L. Zhang, S.Y. Zhao, X.N. Tian, X.S. Zhao, Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes, Langmuir 26 (2010) 17624-17628.https://doi.org/10.1021/la103413s
[65] S. Bose, N.H. Kim, T. Kuila, K.T. Lau, J.H. Lee, Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode, Nanotechnology 22 (2011).
[66] S. Konwer, R. Boruah, S.K. Dolui, Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode, J. Electron. Mater. 40 (2011) 2248-2255.https://doi.org/10.1007/s11664-011-1749-z
[67] H.H. Chang, C.K. Chang, Y.C. Tsai, C.S. Liao, Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor, Carbon 50 (2012) 2331-2336.https://doi.org/10.1016/j.carbon.2012.01.056
[68] J.H. Liu, J.W. An, Y.X. Ma, M.L. Li, R.B. Ma, Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode, J. Electrochem. Soc. 159 (2012) A828-A833.https://doi.org/10.1149/2.093206jes
[69] F. Alvi, M.K. Ram, P.A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor, Electrochim. Acta 56 (2011) 9406-9412.https://doi.org/10.1016/j.electacta.2011.08.024
[70] F. Alvi, P.A. Basnayaka, M.K. Ram, H. Gomez, E. Stefanako, Y. Goswami, A. Kumar, Graphene-polythiophene nanocomposite as novel supercapacitor electrode material, J. New Mater. Electrochem. Sys. 15 (2012) 89-95.
[71] X.C. Dong, J.X. Wang, J. Wang, M.B. Chan-Park, X.G. Li, L.H. Wang, W. Huang, P. Chen, Supercapacitor electrode based on three-dimensional graphene-polyaniline hybrid, Mater. Chem. Phys. 134 (2012) 576-580.https://doi.org/10.1016/j.matchemphys.2012.03.066
[72] L.W. Hu, J.G. Tu, S.Q. Jiao, J.G. Hou, H.M. Zhu, D.J. Fray, In situ electrochemical polymerization of a nanorod-PANI-graphene composite in a reverse micelle electrolyte and its application in a supercapacitor, Phys. Chem. Chem. Phys. 14 (2012) 15652-15656.https://doi.org/10.1039/c2cp42192e
[73] T. Lee, T. Yun, B. Park, B. Sharma, H.K. Song, B.S. Kim, Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: importance of establishing intimate electronic contact through nanoscale blending, J. Mater. Chem. 22 (2012) 21092-21099.https://doi.org/10.1039/c2jm33111j
[74] X. Han, S.J. Liu, Y. Yuan, Y. Wang, L.J. Hu, Experimental study on synthesis and microstructure of poly(p-phenylenediamine)/graphene oxide/Au and its performance in supercapacitor, J. Alloy. Compd. 543 (2012) 200-205.https://doi.org/10.1016/j.jallcom.2012.07.088
[75] Jaidev, S. Ramaprabhu, Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications, Journal of Materials Chemistry, 22 (2012) 18775-18783.https://doi.org/10.1039/C2JM33627H
[76] H. Yadegari, H. Heli, A. Jabbari, Graphene/poly(ortho-phenylenediamine) nanocomposite material for electrochemical supercapacitor, J. Solid State Electrochem. 17 (2013) 2203-2212.https://doi.org/10.1007/s10008-013-2085-4
[77] H. Heli, H. Yadegari, A. Jabbari, Graphene nanosheets-poly(o-aminophenol) nanocomposite for supercapacitor applications, Mater. Chem. Phys. 134 (2012) 21-25.https://doi.org/10.1016/j.matchemphys.2012.02.065
[78] Z.P. Li, J.Q. Wang, Z.F. Wang, L.Y. Niu, J.F. Sun, S.R. Yang, Preparation of poly(sodium-4-styrene sulfonate) functionalized graphene/manganese dioxide composites for supercapacitor application with superior cycling stability, J. Chinese Chem. Soc. 59 (2012) 1351-1356.https://doi.org/10.1002/jccs.201200412
[79] Z.X. Tai, X.B. Yan, Q.J. Xue, Shape-alterable and -recoverable graphene/polyurethane bi-layered composite film for supercapacitor electrode, J. Power Sources 213 (2012) 350-357.https://doi.org/10.1016/j.jpowsour.2012.03.086
[80] P.A. Basnayaka, M.K. Ram, L. Stefanakos, A. Kumar, High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications, Mater. Chem. Phys. 141 (2013) 263-271.https://doi.org/10.1016/j.matchemphys.2013.05.009
[81] J. Chen, C.Y. Jia, Z.Q. Wan, Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor, Synthetic Met. 189 (2014) 69-76.https://doi.org/10.1016/j.synthmet.2014.01.001
[82] S. Dhibar, P. Bhattacharya, D. Ghosh, G. Hatui, C.K. Das, Graphene-single-walled carbon nanotubes-poly(3-methylthiophene) ternary nanocomposite for supercapacitor electrode materials, Ind. Eng. Chem. Res. 53 (2014) 13030-13045.https://doi.org/10.1021/ie501407k
[83] D. Jacob, P.A. Mini, A. Balakrishnan, S.V. Nair, K.R.V. Subramanian, Electrochemical behaviour of graphene-poly (3,4-ethylenedioxythiophene) (PEDOT) composite electrodes for supercapacitor applications, Bull. Mater. Sci. 37 (2014) 61-69.https://doi.org/10.1007/s12034-013-0610-9
[84] X.P. Zuo, Y.L. Zhang, L. Si, B. Zhou, B. Zhao, L.H. Zhu, X.Q. Jiang, One-step electrochemical preparation of sulfonated graphene/polypyrrole composite and its application to supercapacitor, J. Alloy. Compd. 688 (2016) 140-148.https://doi.org/10.1016/j.jallcom.2016.07.184
[85] J. Li, H. Xie, Synthesis of graphene oxide/polypyrrole nanowire composites for supercapacitors, Mater. Lett. 78 (2012) 106-109.https://doi.org/10.1016/j.matlet.2012.03.013
[86] J. Li, H.Q. Xie, Y. Li, Fabrication of graphene oxide/polypyrrole nanowire composite for high performance supercapacitor electrodes, J. Power Sources 241 (2013) 388-395.https://doi.org/10.1016/j.jpowsour.2013.04.144
[87] P. Bandyopadhyay, T. Kuila, J. Balamurugan, T.T. Nguyen, N.H. Kim, J.H. Lee, Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application, Chem. Eng. J. 308 (2017) 1174-1184.https://doi.org/10.1016/j.cej.2016.10.015
[88] B. Song, C.C. Tuan, X.G. Huang, L.Y. Li, K.S. Moon, C.P. Wong, Sulfonated polyaniline decorated graphene nanocomposites as supercapacitor electrodes, Mater. Lett. 166 (2016) 12-15.https://doi.org/10.1016/j.matlet.2015.11.108
[89] J.L. Zhang, J. Gao, Q. Song, Z.R. Guo, A.X. Chen, G. Chen, S.F. Zhou, N-substituted carboxyl polyaniline covalent grafting reduced graphene oxide nanocomposites and its application in supercapacitor, Electrochim. Acta 199 (2016) 70-79.https://doi.org/10.1016/j.electacta.2016.03.003
[90] X.M. Wu, Q.G. Wang, W.Z. Zhang, Y. Wang, W.X. Chen, Enhanced electrochemical performance of hydrogen-bonded graphene/polyaniline for electrochromo-supercapacitor, J. Mater. Sci. 51 (2016) 7731-7741.https://doi.org/10.1007/s10853-016-0055-9
[91] F. Xiao, S.X. Yang, Z.Y. Zhang, H.F. Liu, J.W. Xiao, L. Wan, J. Luo, S. Wang, Y.Q. Liu, Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor, Sci. Rep-UK 5 (2015).
[92] A. Ouyang, A.Y. Cao, S. Hu, Y.H. Li, R.Q. Xu, J.Q. Wei, H.W. Zhu, D.H. Wu, Polymer-coated graphene aerogel beads and supercapacitor application, ACS Appl. Mater. Inter. 8 (2016) 11179-11187.https://doi.org/10.1021/acsami.6b01965
[93] C.L. Xiong, W.B. Zhong, Y.B. Zou, J.W. Luo, W.T. Yang, Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes, Electrochim. Acta 211 (2016) 941-949.https://doi.org/10.1016/j.electacta.2016.06.117
[94] A. Aphale, A. Chattopadhyay, K. Mahakalakar, P. Patra, Synthesis and electrochemical analysis of algae cellulose-polypyrrole-graphene nanocomposite for supercapacitor electrode, J. Nanosci. Nanotechnol. 15 (2015) 6225-6229.https://doi.org/10.1166/jnn.2015.10280
[95] A. De Adhikari, R. Oraon, S.K. Tiwari, J.H. Lee, G.C. Nayak, Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application, RSC Adv. 5 (2015) 27347-27355.https://doi.org/10.1039/C4RA16174B
[96] L.N. Ma, R. Liu, H.J. Niu, M. Zhao, Y.D. Huang, Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor, Compos. Sci. Technol.137 (2016) 87-93.https://doi.org/10.1016/j.compscitech.2016.10.027
[97] K.S. Xia, Q.Y. Li, L. Zheng, K. You, X.L. Tian, B. Han, Q. Gao, Z.Y. Huang, G. Chen, C.G. Zhou, Controllable fabrication of 2D and 3D porous graphene architectures using identical thermally exfoliated graphene oxides as precursors and their application as supercapacitor electrodes, Micropor. Mesopor. Mater. 237 (2017) 228-236.https://doi.org/10.1016/j.micromeso.2016.09.015
[98] Z. Liu, W.L. Chen, X. Fan, J.Y. Yu, Y. Zhao, Preparation of 3D MnO2/polyaniline/graphene hybrid material via interfacial polymerization as high-performance supercapacitor electrode, Chinese J. Chem. 34 (2016) 839-846.https://doi.org/10.1002/cjoc.201600217
[99] C.L. Ma, L. Peng, Y.F. Feng, J.X. Shen, Z.Q. Xiao, K.Y. Cai, Y.H. Yu, Y. Min, A.J. Epstein, Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application, Synthetic Met. 220 (2016) 227-235.https://doi.org/10.1016/j.synthmet.2016.06.008
[100] H.X. Yang, N. Wang, Y.M. Ren, L. Cai, Z.M. Chen, Q. Xu, Supercritical CO2-assisted preparation of 3D graphene-pyrrole/carbon nanotubes/polyaniline Nanoarchitectures for efficient supercapacitor electrodes, Mater. Lett. 139 (2015) 471-474.https://doi.org/10.1016/j.matlet.2014.10.086
[101] K.H. Lee, Y.W. Lee, S.W. Lee, J.S. Ha, S.S. Lee, J.G. Son, Ice-templated self-assembly of VOPO4-graphene nanocomposites for vertically porous 3D supercapacitor electrodes, Sci. Rep-UK 5 (2015).
[102] T.F. Qin, Z.Y. Wan, Z.L. Wang, Y.X. Wen, M.T. Liu, S.L. Peng, D.Y. He, J. Hou, F. Huang, G.Z. Cao, 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances, J. Power Sources 336 (2016) 455-464.https://doi.org/10.1016/j.jpowsour.2016.11.003
[103] L. Mao, C. Guan, X.L. Huang, Q.Q. Ke, Y. Zhang, J. Wang, 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor, Electrochim. Acta 196 (2016) 653-660.https://doi.org/10.1016/j.electacta.2016.02.084
[104] X.J. Gao, H.P. Lv, Z.H. Li, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, Low-cost and high-performance of a vertically grown 3D Ni-Fe layered double hydroxide/graphene aerogel supercapacitor electrode material, RSC Adv. 6 (2016) 107278-107285.https://doi.org/10.1039/C6RA19495H
[105] M. Yu, J.P. Chen, J.H. Liu, S.M. Li, Y.X. Ma, J.D. Zhang, J.W. An, Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation, Electrochim. Acta 151 (2015) 99-108.https://doi.org/10.1016/j.electacta.2014.10.156
[106] W. Lan, G.M. Tang, Y.R. Sun, Y.P. Wei, P.Q. La, Q. Su, E.Q. Xie, Different-layered Ni(OH)2 nanoflakes/3D graphene composites for flexible supercapacitor electrodes, J. Mater. Scie-Mater. Electron. 27 (2016) 2741-2747.https://doi.org/10.1007/s10854-015-4085-x
[107] W. Lan, Y.R. Sun, Y.X. Chen, J.Y. Wang, G.M. Tang, W. Dou, Q. Su, E.Q. Xie, Ultralight and flexible supercapacitor electrodes made from Ni(OH)2 nanosheets doped with Ag nanoparticle/3D graphene composite, RSC Adv. 5 (2015) 20878-20883.https://doi.org/10.1039/C5RA00317B
[108] J. Tong, H.H. Zhang, J.N. Gu, L. Li, C. Ma, J. Zhao, C.Y. Wang, Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-assisted synthesis of graphene/polyaniline composites as high-performance supercapacitor electrodes, J. Mater. Sci. 51 (2016) 1966-1977.https://doi.org/10.1007/s10853-015-9506-y
[109] W.D. Wang, X.Q. Lin, H.B. Zhao, Q.F. Lu, Nitrogen-doped graphene prepared by pyrolysis of graphene oxide/polyaniline composites as supercapacitor electrodes, J. Anal. Appl. Pyrol. 120 (2016) 27-36.https://doi.org/10.1016/j.jaap.2016.04.006
[110] H.H. Zhou, H.J. Zhai, G.Y. Han, Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes, J. Power Sources 323 (2016) 125-133.https://doi.org/10.1016/j.jpowsour.2016.05.049
[111] H.H. Zhou, H.J. Zhai, A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances, Org. Electron. 37 (2016) 197-206.https://doi.org/10.1016/j.orgel.2016.06.036
[112] Y.L. Zhang, L. Si, B. Zhou, B. Zhao, Y.Y. Zhu, L.H. Zhu, X.Q. Jiang, Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor, Chem. Eng. J. 288 (2016) 689-700.https://doi.org/10.1016/j.cej.2015.12.058
[113] Z.X. Yin, H.H. Zhou, C.P. Fu, N.S. Zhang, D. Liu, Y.F. Kuang, Synthesis of curly graphene nanoribbon/polyaniline/MnO2 composite and its application in supercapacitor, RSC Adv. 6 (2016) 41142-41150.https://doi.org/10.1039/C6RA02777F
[114] K.V. Sankar, R.K. Selvan, Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances, Electrochim. Acta 213 (2016) 469-481.https://doi.org/10.1016/j.electacta.2016.07.056
[115] G. Chen, Q.F. Lu, H.B. Zhao, SnO2-decorated graphene/polyaniline nanocomposite for a high-performance supercapacitor electrode, J. Mater. Sci. Technol. 31 (2015) 1101-1107.https://doi.org/10.1016/j.jmst.2015.09.013
[116] Q.H. Wu, M. Chen, S.S. Wang, X. Zhang, L. Huan, G.W. Diao, Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor, Chem. Eng. J. 304 (2016) 29-38.https://doi.org/10.1016/j.cej.2016.06.060
[117] X.M. Wu, Q.G. Wang, W.Z. Zhang, Y. Wang, W.X. Chen, Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor, Electrochim. Acta 211 (2016) 1066-1075.https://doi.org/10.1016/j.electacta.2016.06.026
[118] M. Usman, L.J. Pan, M. Asif, Z. Mahmood, M.A. Khan, X. Fu, Enhanced electrochemical supercapacitor properties with synergistic effect of polyaniline, graphene and AgxO, Appl.Surf. Sci. 370 (2016) 297-305.https://doi.org/10.1016/j.apsusc.2016.02.175
[119] K. Pal, V. Panwar, S. Bag, J. Manuel, J.H. Ahn, J.K. Kim, Graphene oxide-polyaniline-polypyrrole nanocomposite for a supercapacitor electrode, RSC Adv. 5 (2015) 3005-3010.https://doi.org/10.1039/C4RA14614J
[120] S. Sahoo, P. Bhattacharya, S. Dhibar, G. Hatui, T. Das, C.K. Das, Graphene/poly(aniline-co-pyrrole) nanocomposite: Potential candidate for supercapacitor and microwave absorbing applications, J. Nanosci. Nanotechnol. 15 (2015) 6931-6941.https://doi.org/10.1166/jnn.2015.10540