Quantum dot as light harvester nanocrystals for solar cell applications

$15.95

Quantum dot as light harvester nanocrystals for solar cell applications

M. Patel, S. Sahu, A. K. Verma, P. Agnihotri, Surya Prakash Singh, Ramanuj Narayan, Sanjay Tiwari

In this article we are reviewing the application of quantum dot nanocrystals as light harvesters for solar cell applications. Three foremost ways to make use of semiconductor quantum dots in solar cells are metal-semiconductor photovoltaic cell, polymer-semiconductor solar cell and quantum dot sensitized solar cell. Band energies can be controlled by size change in quantum dots which gives new ways to control the response and efficiency of the solar cell. Quantum dot solar cell reduces heat waste by multiple electron generation (MEG) and converts up to three electrons per photon. Therefore, more than 100% quantum efficiency is possible for quantum dot solar cells. Furthermore Quantum dot forms one or more intermediate bands (IBs) in the host semiconductor bandgap, enabling two-step absorption of sub-band gap photons. Since the IBs are electrically isolated from Valance Band and Conduction Band, their introduction increases short circuit current (Isc) and keeps open circuit voltage (Voc) unreduced.

Keywords
Nanocrystals, Solar Cell, Quantum Dot, Multiple Electron Generation, Intermediate Bands

Published online 8/2/2017, 17 pages

DOI: http://dx.doi.org/10.21741/9781945291371-4

Part of Recent Advances in Photovoltaics

References
[1] Kamat, P. V., 2006. Harvesting photons with carbon nanotubes. Nano Today, 1(4), pp. 20-27. https://doi.org/10.1016/S1748-0132(06)70113-X
[2] Guchhait, A., Rath, A. K. and Pal, A. J., 2011. To make polymer: quantum dot hybrid solar cells NIR-active by increasing diameter of PbSnanoparticles. Solar energy materials and solar cells, 95(2), pp. 651-656. https://doi.org/10.1016/j.solmat.2010.09.034
[3] Kim, H., Jeong, H., An, T. K., Park, C. E. and Yong, K., 2012. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting. ACS applied materials & interfaces, 5(2), pp. 268-275. https://doi.org/10.1021/am301960h
[4] Chen, H. C., Lin, C. C., Han, H. V., Chen, K. J., Tsai, Y. L., Chang, Y. A., Shih, M. H., Kuo, H. C. and Yu, P., 2012. Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film. Solar Energy Materials and Solar Cells, 104, pp. 92-96. https://doi.org/10.1016/j.solmat.2012.05.003
[5] Wright, M. and Uddin, A., 2012. Organic-inorganic hybrid solar cells: A comparative review. Solar energy materials and solar cells, 107, pp. 87-111. https://doi.org/10.1016/j.solmat.2012.07.006
[6] Ryan, J. W., Marin-Beloqui, J. M., Albero, J. and Palomares, E., 2013. Nongeminate Recombination Dynamics-Device Voltage Relationship in Hybrid PbS Quantum Dot/C60 Solar Cells. The Journal of Physical Chemistry C, 117(34), pp. 17470-17476. https://doi.org/10.1021/jp4059824
[7] Laghumavarapu, R. B., Liang, B. L., Bittner, Z. S., Navruz, T. S., Hubbard, S. M., Norman, A. and Huffaker, D. L., 2013. GaSb/InGaAs quantum dot-well hybrid structure active regions in solar cells. Solar Energy Materials and Solar Cells, 114, pp. 165-171. https://doi.org/10.1016/j.solmat.2013.02.027
[8] McDaniel, H., Fuke, N., Pietryga, J. M. and Klimov, V. I., 2013. Engineered CuInSe x S2–x Quantum Dots for Sensitized Solar Cells. The journal of physical chemistry letters, 4(3), pp. 355-361. https://doi.org/10.1021/jz302067r
[9] Li, Z., Yu, L., Liu, Y. and Sun, S., 2014. CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochimica Acta, 129, pp. 379-388. https://doi.org/10.1016/j.electacta.2014.02.145
[10] Yu, Y., Kamat, P. V. and Kuno, M., 2010. A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance. Advanced Functional Materials, 20(9), pp. 1464-1472. https://doi.org/10.1002/adfm.200902372
[11] Ren, S., Chang, L. Y., Lim, S. K., Zhao, J., Smith, M., Zhao, N., Bulovic, V., Bawendi, M. and Gradecak, S., 2011. Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano letters, 11(9), pp. 3998-4002. https://doi.org/10.1021/nl202435t
[12] Robel, I., Subramanian, V., Kuno, M. and Kamat, P. V., 2006. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 128(7), pp. 2385-2393. https://doi.org/10.1021/ja056494n
[13] Ma, W., Swisher, S. L., Ewers, T., Engel, J., Ferry, V. E., Atwater, H. A. and Alivisatos, A. P., 2011. Photovoltaic performance of ultrasmall PbSe quantum dots. ACS nano, 5(10), pp. 8140-8147. https://doi.org/10.1021/nn202786g
[14] Htoon, H., Malko, A. V., Bussian, D., Vela, J., Chen, Y., Hollingsworth, J. A. and Klimov, V. I., 2010. Highly emissive multiexcitons in steady-state photoluminescence of individual “giant” CdSe/CdS core/shell nanocrystals. Nano letters, 10(7), pp. 2401-2407. https://doi.org/10.1021/nl1004652
[15] Jiao, S., Shen, Q., Mora-Seró, I., Wang, J., Pan, Z., Zhao, K., Kuga, Y., Zhong, X. and Bisquert, J., 2015. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS nano, 9(1), pp. 908-915. https://doi.org/10.1021/nn506638n
[16] Yao, M., Cong, S., Arab, S., Huang, N., Povinelli, M. L., Cronin, S. B., Dapkus, P. D. and Zhou, C., 2015. Tandem solar cells using GaAs nanowires on Si: Design, Fabrication, and Observation of voltage addition. Nano letters, 15(11), pp. 7217-7224. https://doi.org/10.1021/acs.nanolett.5b03890
[17] Raïssi, M., Vignau, L., Cloutet, E. and Ratier, B., 2015. Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells. Organic Electronics, 21, pp. 86-91. https://doi.org/10.1016/j.orgel.2015.03.003
[18] Li, Z., Yu, L., Liu, Y. and Sun, S., 2014. CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochimica Acta, 129, pp. 379-388. https://doi.org/10.1016/j.electacta.2014.02.145
[19] Chen, Y., Tao, Q., Fu, W., Yang, H., Zhou, X., Zhang, Y., Su, S., Wang, P. and Li, M., 2014. Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO. Electrochimica Acta, 118, pp. 176-181. https://doi.org/10.1016/j.electacta.2013.10.081
[20] Dimitrov, D. Z. and Du, C. H., 2013. Crystalline silicon solar cells with micro/nano texture. Applied Surface Science, 266, pp. 1-4. https://doi.org/10.1016/j.apsusc.2012.10.081
[21] Laghumavarapu, R. B., Liang, B. L., Bittner, Z. S., Navruz, T. S., Hubbard, S. M., Norman, A. and Huffaker, D. L., 2013. GaSb/InGaAs quantum dot–well hybrid structure active regions in solar cells. Solar Energy Materials and Solar Cells, 114, pp. 165-171. https://doi.org/10.1016/j.solmat.2013.02.027
[22] Wang, H., Kubo, T., Nakazaki, J., Kinoshita, T. and Segawa, H., 2013. PbS-quantum-dot-based heterojunction solar cells utilizing ZnO nanowires for high external quantum efficiency in the near-infrared region. The Journal of Physical Chemistry Letters, 4(15), pp. 2455-2460. https://doi.org/10.1021/jz4012299
[23] Liu, B., Wang, D., Wang, L., Sun, Y., Lin, Y., Zhang, X. and Xie, T., 2013. Glutathione-assisted hydrothermal synthesis of CdS-decorated TiO 2 nanorod arrays for quantum dot-sensitized solar cells. Electrochimica Acta, 113, pp. 661-667. https://doi.org/10.1016/j.electacta.2013.09.143
[24] Lai, Y., Lin, Z., Zheng, D., Chi, L., Du, R. and Lin, C., 2012. CdSe/CdS quantum dots co-sensitized TiO 2 nanotube array photoelectrode for highly efficient solar cells. Electrochimica Acta, 79, pp. 175-181. https://doi.org/10.1016/j.electacta.2012.06.105
[25] Yang, J., Pan, L., Zhu, G., Liu, X., Sun, H. and Sun, Z., 2012. Electrospun TiO2 microspheres as a scattering layer for CdS quantum dot-sensitized solar cells. Journal of Electroanalytical Chemistry, 677, pp. 101-104. https://doi.org/10.1016/j.jelechem.2012.05.018
[26] Deng, J., Wang, M., Song, X., Shi, Y. and Zhang, X., 2012. CdS and CdSe quantum dots subsectionally sensitized solar cells using a novel double-layer ZnO nanorod arrays. Journal of colloid and interface science, 388(1), pp. 118-122. https://doi.org/10.1016/j.jcis.2012.08.017
[27] Kim, H., Jeong, H., An, T. K., Park, C. E. and Yong, K., 2012. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting. ACS applied materials & interfaces, 5(2), pp. 268-275. https://doi.org/10.1021/am301960h
[28] Shockley, W. and Queisser, H. J., 1961. Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, 32(3), pp. 510-519. https://doi.org/10.1063/1.1736034
[29] Han, H. Y., Yoon, H. and Yoon, C. S., 2015. Parallel polymer tandem solar cells containing comb-shaped common electrodes. Solar Energy Materials and Solar Cells, 132, pp. 56-66. https://doi.org/10.1016/j.solmat.2014.08.018
[30] You, J., Chen, C. C., Hong, Z., Yoshimura, K., Ohya, K., Xu, R., Ye, S., Gao, J., Li, G. and Yang, Y., 2013. 10.2 % Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells. Advanced Materials, 25(29), pp. 3973-3978. https://doi.org/10.1002/adma.201300964
[31] Cheyns, D., Rand, B. P. and Heremans, P., 2010. Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage. Appl. Phys. Lett, 97(3), p. 033301. https://doi.org/10.1063/1.3464169
[32] Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M. and Heeger, A. J., 2007. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 317(5835), pp. 222-225. https://doi.org/10.1126/science.1141711
[33] Zhao, D. W., Sun, X. W., Jiang, C. Y., Kyaw, A. K. K., Lo, G. Q. and Kwong, D. L., 2008. Efficient tandem organic solar cells with an Al/MoO3 intermediate layer. Applied Physics Letters, 93(8), p. 83305. https://doi.org/10.1063/1.2976126
[34] You, J., Chen, C. C., Hong, Z., Yoshimura, K., Ohya, K., Xu, R., Ye, S., Gao, J., Li, G. and Yang, Y., 2013. 10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells. Advanced Materials, 25(29), pp. 3973-3978. https://doi.org/10.1002/adma.201300964
[35] Chou, C. H., Kwan, W. L., Hong, Z., Chen, L. M. and Yang, Y., 2011. A metal‐oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Advanced Materials, 23(10), pp. 1282-1286. https://doi.org/10.1002/adma.201001033
[36] Nozik, A. J., 2001. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annual review of physical chemistry, 52(1), pp. 193-231. https://doi.org/10.1146/annurev.physchem.52.1.193
[37] Shrestha, S. K., Aliberti, P. and Conibeer, G. J., 2010. Energy selective contacts for hot carrier solar cells. Solar Energy Materials and Solar Cells, 94(9), pp. 1546-1550. https://doi.org/10.1016/j.solmat.2009.11.029
[38] Luque, A. and Martí, A., 2010. Electron–phonon energy transfer in hot-carrier solar cells. Solar Energy Materials and Solar Cells, 94(2), pp. 287-296. https://doi.org/10.1016/j.solmat.2009.10.001
[39] Takeda, Y., Ito, T., Motohiro, T., König, D., Shrestha, S. and Conibeer, G., 2009. Hot carrier solar cells operating under practical conditions. Journal of Applied Physics, 105(7), p. 074905. https://doi.org/10.1063/1.3086447
[40] Würfel, P., Brown, A. S., Humphrey, T. E. and Green, M. A., 2005. Particle conservation in the hot‐carrier solar cell. Progress in Photovoltaics: Research and Applications, 13(4), pp. 277-285. https://doi.org/10.1002/pip.584
[41] König, D., Casalenuovo, K., Takeda, Y., Conibeer, G., Guillemoles, J. F., Patterson, R., Huang, L. M. and Green, M. A., 2010. Hot carrier solar cells: Principles, materials and design. Physica E: Low-dimensional Systems and Nanostructures, 42(10), pp. 2862-2866. https://doi.org/10.1016/j.physe.2009.12.032
[42] Conibeer, G. J., König, D., Green, M. A. and Guillemoles, J. F., 2008. Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films, 516(20), pp. 6948-6953. https://doi.org/10.1016/j.tsf.2007.12.102
[43] Le Bris, A. and Guillemoles, J. F., 2010. Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts. Applied Physics Letters, 97(11), p. 113506. https://doi.org/10.1063/1.3489405
[44] Martí, A., López, N., Antolin, E., Cánovas, E., Stanley, C., Farmer, C., Cuadra, L. and Luque, A., 2006. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films, 511, pp. 638-644. https://doi.org/10.1016/j.tsf.2005.12.122
[45] Wang, W., Lin, A. S. and Phillips, J. D., 2009. Intermediate-band photovoltaic solar cell based on ZnTe: O. Applied Physics Letters, 95(1), p. 011103. https://doi.org/10.1063/1.3166863
[46] Luque, A., Panchak, A., Vlasov, A., Martí, A. and Andreev, V., 2016. Four-band Hamiltonian for fast calculations in intermediate-band solar cells. Physica E: Low-dimensional Systems and Nanostructures, 76, pp. 127-134. https://doi.org/10.1016/j.physe.2015.10.019
[47] Nozik, A. J., 2008. Multiple exciton generation in semiconductor quantum dots. Chemical Physics Letters, 457(1), pp. 3-11. https://doi.org/10.1016/j.cplett.2008.03.094
[48] Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J. and Johnson, J. C., 2010. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical reviews, 110(11), pp. 6873-6890. https://doi.org/10.1021/cr900289f
[49] Stolle, C. J., Harvey, T. B., Pernik, D. R., Hibbert, J. I., Du, J., Rhee, D. J., Akhavan, V. A., Schaller, R. D. and Korgel, B. A., 2014. Multiexciton solar cells of CuInSe2 nanocrystals. The journal of physical chemistry letters, 5(2), pp. 304-309. https://doi.org/10.1021/jz402596v
[50] Davis, N. J., Böhm, M. L., Tabachnyk, M., Wisnivesky-Rocca-Rivarola, F., Jellicoe, T. C., Ducati, C., Ehrler, B. and Greenham, N. C., 2015. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120 %. Nature communications, 6. https://doi.org/10.1038/ncomms9259
[51] Bera, D., Qian, L., Tseng, T. K. and Holloway, P. H., 2010. Quantum dots and their multimodal applications: a review. Materials, 3(4), pp. 2260-2345. https://doi.org/10.3390/ma3042260
[52] Wood, A., Giersig, M. and Mulvaney, P., 2001. Fermi level equilibration in quantum dot-metal nanojunctions. The Journal of Physical Chemistry B, 105(37), pp. 8810-8815. https://doi.org/10.1021/jp011576t
[53] Kamat, P. V., 2008. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. The Journal of Physical Chemistry C, 112(48), pp. 18737-18753. https://doi.org/10.1021/jp806791s
[54] Johnston, K. W., Pattantyus-Abraham, A. G., Clifford, J. P., Myrskog, S. H., MacNeil, D. D., Levina, L. and Sargent, E. H., 2008. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters, 92(15), p. 151115. https://doi.org/10.1063/1.2912340
[55] Hoppe, H. and Sariciftci, N. S., 2004. Organic solar cells: An overview. Journal of Materials Research, 19(07), pp. 1924-1945. https://doi.org/10.1557/JMR.2004.0252
[56] Greenham, N. C., Peng, X. and Alivisatos, A. P., 1996. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical review B, 54(24), p. 17628. https://doi.org/10.1103/PhysRevB.54.17628
[57] Cui, D., Xu, J., Zhu, T., Paradee, G., Ashok, S. and Gerhold, M., 2006. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Applied Physics Letters, 88(18), p. 183111. https://doi.org/10.1063/1.2201047
[58] Jiang, X., Schaller, R. D., Lee, S. B., Pietryga, J. M., Klimov, V. I. and Zakhidov, A. A., 2007. PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. Journal of materials research, 22(08), pp. 2204-2210. https://doi.org/10.1557/jmr.2007.0289
[59] Liu, C. Y., Holman, Z. C. and Kortshagen, U. R., 2008. Hybrid solar cells from P3HT and silicon nanocrystals. Nano letters, 9(1), pp. 449-452. https://doi.org/10.1021/nl8034338
[60] Guchhait, A., Rath, A. K. and Pal, A. J., 2011. To make polymer: quantum dot hybrid solar cells NIR-active by increasing diameter of PbSnanoparticles. Solar energy materials and solar cells, 95(2), pp. 651-656. https://doi.org/10.1016/j.solmat.2010.09.034
[61] Ren, S., Chang, L. Y., Lim, S. K., Zhao, J., Smith, M., Zhao, N., Bulovic, V., Bawendi, M. and Gradecak, S., 2011. Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano letters, 11(9), pp. 3998-4002. https://doi.org/10.1021/nl202435t
[62] Chen, H. C., Lin, C. C., Han, H. V., Chen, K. J., Tsai, Y. L., Chang, Y. A., Shih, M. H., Kuo, H. C. and Yu, P., 2012. Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film. Solar Energy Materials and Solar Cells, 104, pp. 92-96. https://doi.org/10.1016/j.solmat.2012.05.003
[64] Sehgal, P. and Kumar Narula, A., 2015. Quantum dot sensitized solar cell based on poly (3-hexyl thiophene)/CdSe nanocomposites. Optical Materials, 48, pp. 44-50. https://doi.org/10.1016/j.optmat.2015.07.027
[65] Huynh, W. U., Dittmer, J. J. and Alivisatos, A. P., 2002. Hybrid nanorod-polymer solar cells. science, 295(5564), pp. 2425-2427.
[66] Kim, J., Hong, Z., Li, G., Song, T. B., Chey, J., Lee, Y. S., You, J., Chen, C. C., Sadana, D. K. and Yang, Y., 2015. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nature communications, 6. https://doi.org/10.1038/ncomms7391
[67] Grätzel, M., 2003. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), pp. 145-153. https://doi.org/10.1016/S1389-5567(03)00026-1
[68] Kamat, P. V., Tvrdy, K., Baker, D. R. and Radich, J. G., 2010. Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chemical reviews, 110(11), pp. 6664-6688. https://doi.org/10.1021/cr100243p
[69] Hod, I. and Zaban, A., 2013. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects. Langmuir, 30(25), pp. 7264-7273. https://doi.org/10.1021/la403768j
[70] Fuke, N., Hoch, L. B., Koposov, A. Y., Manner, V. W., Werder, D. J., Fukui, A., Koide, N., Katayama, H. and Sykora, M., 2010. CdSe quantum-dot-sensitized solar cell with∼ 100% internal quantum efficiency. Acs Nano, 4(11), pp. 6377-6386. https://doi.org/10.1021/nn101319x
[71] Semonin, O. E., Luther, J. M., Choi, S., Chen, H. Y., Gao, J., Nozik, A. J. and Beard, M. C., 2011. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 334(6062), pp. 1530-1533. https://doi.org/10.1126/science.1209845
[72] Zhao, K., Pan, Z., Mora-Seró, I., Cánovas, E., Wang, H., Song, Y., Gong, X., Wang, J., Bonn, M., Bisquert, J. and Zhong, X., 2015. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. Journal of the American Chemical Society, 137(16), pp. 5602-5609. https://doi.org/10.1021/jacs.5b01946
[73] Luque, A. and Martí, A., 1997. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 78(26), p. 5014. https://doi.org/10.1103/PhysRevLett.78.5014
[74] Cuadra, L., Martı, A. and Luque, A., 2004. Present status of intermediate band solar cell research. Thin Solid Films, 451, pp. 593-599. https://doi.org/10.1016/j.tsf.2003.11.047
[75] Luque, A., Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., Caballero, L. J., Cuadra, L. and Balenzategui, J. L., 2005. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Applied Physics Letters, 87(8), p. 083505. https://doi.org/10.1063/1.2034090
[76] Martí, A., Antolín, E., Stanley, C. R., Farmer, C. D., López, N., Diaz, P., Cánovas, E., Linares, P. G. and Luque, A., 2006. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Physical Review Letters, 97(24), p. 247701. https://doi.org/10.1103/PhysRevLett.97.247701
[77] Ahsan, N., Miyashita, N., Islam, M. M., Yu, K. M., Walukiewicz, W. and Okada, Y., 2012. Two-photon excitation in an intermediate band solar cell structure. Applied Physics Letters, 100(17), p. 172111. https://doi.org/10.1063/1.4709405