Nanostructured solar cells


Nanostructured solar cells

Surendra K. Pandey

Photovoltaics presently represent the fastest growing sector of the electricity generation industry, although growing from a small base. Energy conversion efficiency is a key parameter with this technology since it directly impacts both material and deployment costs. The performance of the traditional bulk semiconductor solar cell is limited to about 33% while thermodynamic limits on the conversion of sunlight to electricity are much higher at 93%. Low dimensional structures appear capable of allowing much of this gap to be bridged. Nanostructure based solar energy is attracting significant attention as possible candidate for achieving drastic improvement in photovoltaic energy conversion efficiency. The use of nanostructures in photovoltaics offers the potential for high efficiency by either using new physical mechanisms or by allowing solar cells which have efficiencies closer to their theoretical maximum, for example by tailoring material properties. At the same time, nanostructures have potentially low fabrication costs, moving to structures or materials which can be fabricated using chemically or biologically formed materials. Despite this potential, there are multiple and significant challenges in achieving viable nanostructured solar cells, ranging from the demonstration of the fundamental mechanisms, device-level issues such as transport mechanisms and device structures and materials to implement nanostructured solar cells, and low cost fabrication techniques to implement high performance designs. The cell designs and enhancements are categorized by the type of nanostructure utilized. These include bulk nanostructured materials (3D), quantum wells (2D), nanowires (1D), and quantum dots/nanoparticles (0D). During the last decade, the development of the photovoltaic device theory and nanofabrication technology enables studies of more complex nanostructured solar cells with higher conversion efficiency and lower production cost. The fundamental principles and important features of these advanced solar cell designs are systematically presented and summarized, with a focus on the function and role of nanostructures and the key factors affecting device performance. Among various nanostructures, special attention has been given to those relying on quantum effect.

Photovoltaics, Nanostructures, Low-cost Self-assembled Nanostructures, Nanostructured Solar Cell Systems, Solar Power

Published online 8/2/2017, 59 pages


Part of Recent Advances in Photovoltaics

[1] Travis Bradford, Solar Revolution: The Economic Transformation of the Global Energy Industry, MIT Press (2006).
[2] R. M. Swanson, ‘The Promise of Concentrators’, Progress in Photovoltaics: Res. Appl., 8, 93-111 (2000).<93::AID-PIP303>3.0.CO;2-S
[4] M. C. Beard, J. M. Luther, O. E. Semonin, and A. J. Nozik, J. Acc. Chem. Res., 46, 1252-1260 (2013).
[6] J. Oh, H.-C. Yuan, and H. M. Branz, Nature Nanotech., 7, 743-748 (2012).
[7] M. D. Kelzenberg et al., Nature Mater., 9, 239-244 (2010).
[8] E. Garnett, and P. Yang, Nano Lett., 10, 1082-1087 (2010).
[9] P. Wurfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, Wiley (2009).
[10] C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, Nature Mater., 13, 796-801 (2014).
[11] M. C. Beard, A. H. Ip, J. M. Luther, E. H. Sargent, and A. J. Nozik, Advanced Concepts in Photovoltaics (eds A. J. Nozik, G. Conibeer, and M. C. Beard) Ch. 11, Royal Society of Chemistry (2014).
[12] Z. Ning et al., Nature Mater., 13, 822-828 (2014).
[13] H. W. Hillhouse, and M. C. Beard, Curr. Opin. Colloid Interface Sci., 14, 245-259 (2009).
[14] N.-G. Park, Advanced Concepts in Photovoltaics (eds A. J. Nozik, G. Conibeer, and M. C. Beard) Ch. 7, Royal Society of Chemistry (2014).
[15] A. J. Devos, Phys. D, 13, 839-46 (1980).
[16] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt., 22, 701-710 (2014).
[17] X. Wang et al., Nature Photon., 5, 480-484 (2011).
[18] Y. Okada, T. Sogabe, and Y. Shoji, Advanced Concepts in Photovoltaics (eds A. J. Nozik, G. Gonibeer, and M. C. Beard) Ch. 13, Royal Society of Chemistry (2014).
[19] F. Meinardi et al., Nature Photon., 8, 392-399 (2014).
[20] M. C. Beard et al., Nano Lett., 9, 836-845 (2009).
[21] C. M. Cirloganu et al., Nature Commun., 5, 4148 (2014).
[22] J. Zhang, J. Gao, E. A. Miller, J. M. Luther, and M. C. Beard, ACS Nano, 8, 614-622 (2013).
[23] R. Plass, S. Pelet, J. Krueger, M. Gratzel, and U. Bach, ‘Quantum dot sensitization of organic-inorganic hybrid solar cells’, Journal of Physical Chemistry B, 106, No. 31, 7578-7580 (2002).
[24] T. Trupke, M. Green, and P. Wurfel, ‘Improving solar cell efficiencies by up- conversion of sub-band-gap light’, J. Appl. Phys., 92, 4117-4122 (2002).
[25] T. Trupke, M. Green, and P. Wurfel, ‘Improving solar cell efficiencies by down-conversion of high-energy photons’, J. Appl. Phys., 92, 1668-1674 (2002).
[26] B. O’Regan, and M. Grӓtzel, Nature, 353, 737 (1991).
[27] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science, 317, 222 (2007).
[28] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Grӓtzel, J. Phys. Chem. B, 107, 14336 (2003).
[29] B. Schwenzer, K. M. Roth, J. R. Gomm, M. Murr, and D. E. Morse, J. Mater. Chem., 16, 401 (2006).
[30] M. Nanu, J. Schoonman, and A. Goossens, Nano Lett., 5, 1716 (2005).
[31] S. Guha, and J. Yang, J. Non-cryst. Solids, 352, 1917 (2006).
[32] X. Yang, J. B. He’roux, L. F. Mei, and W. I. Wang, Appl. Phys. Lett., 78, 4068 (2001).
[33] L. S. Yu, S. S. Li, and P. Ho, Proc. SPIE, 1675, 255 (1992).
[34] N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, Appl. Phys. Lett., 75, 4195 (1999).
[35] J. U. Lee, P. P. Gipp, and C. M. Heller, Appl. Phys. Lett., 85, 145 (2004).
[36] J. U. Lee, Phys. Rev. B, 75, 75409 (2007).
[37] A. Du Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, Appl. Phys. Lett., 87, 203511 (2005).
[38] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425 (2002).
[39] T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys., 92, 1668 (2002).
[40] T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys., 92, 4117 (2002).
[41] M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, J. Appl. Phys., 83, 4213 (1998).
[42] I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, ‘Air-stable all-inorganic nanocrystal solar cells processed from solution’, Science, 310, 462-465 (2005).
[43] A. Martı’, E. Antolın, C. R. Stanley, C. D. Farmer, N. Lopez, P. Dıaz, E. Canovas, P. G. Linares, and A. Luque, Phys. Rev. Lett., 97, 247701 (2006).
[44] G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K.-I. Lin, Thin Solid Films, 511-512, 654 (2006).
[45] J. E. Granata, J. H. Ermer, P. Hebert, M. Haddad, R. R. King, D. D. Krut, M. S. Gillanders, N. H. Karam, and B. T. Cavicchi, Proceedings of the 29th IEEE Photovoltaic Specialist Conference, IEEE, New York, 824 (2002).
[46] S. A. Maier, and H. A. Atwater, Plasmonics: J. Appl. Phys., 98, 011101 (2005).
[47] C. Kittel, Introduction to Solid State Physics, 8th edition, Wiley, New York (2004).
[48] B.-H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, Nanotechnology, 18, 075706 (2007).
[49] S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, Nano Lett., 5, 515 (2005).
[50] J. R. Cole, and N. J. Halas, Appl. Phys. Lett., 89, 153120 (2006).
[51] D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett., 86, 063106 (2005).
[52] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, Appl. Phys. Lett., 89, 093103 (2006).
[53] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys., 101, 093105 (2007).
[54] D. V. Talapin, and C. B. Murray, Science, 310, 86 (2005).
[55] D. Yu, B. L. Wehrenberg, P. Jha, J. Ma, and P. Guyot-Sionnest, J. Appl. Phys., 99, 104315 (2006).
[56] T. A. Klar, T. Franzl, A. L. Rogach, and J. Feldmann, Adv. Mater., 17, 769 (2005).
[57] Kazuo Nakajima, Keisuke Ohdaira, Kozo Fujiwara, and Wugen Pan, Solar Energy Materials & Solar Cells, 88, 323 (2005).
[58] D. J. Friedman, J. F. Geisz, S.R. Kurtz, and J. M. Olson, J. Cryst. Growth, 195, 409 (1998).
[59] H. Q. Hou, K. C. Reinhardt, S. R. Kurtz, J. M. Gee, A. A. Allerman, B. E. Hammons, P. C. Chang, and E. D. Jones, Proc. 2nd World Conf. on Photovoltaic Energy Conversion, IEEE, 3600 (1998).
[60] D. J. Friedman, J. F. Geisz, S. R. Kurtz, and J. M. Olson, Proc. 2nd World Conf. on Photovoltaic Energy Conversion, IEEE, 3 (1998).
[61] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, Appl. Phys. Lett., 74, 729 (1999).
[62] J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, and B. M. Keyes, J. Cryst. Growth, 195, 401 (1998).
[63] S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg, and E. D. Jones, Appl. Phys. Lett., 77, 400 (2000).
[64] V. Nadenau, D. Braunger, D. Hariskos, M. Kaiser, C. Koble, M. Ruckh, R. Schaffer, D. Schmid, T. Walter, S. Zwergart, and H. W. Schock, Prog. Photogr. Res. Appl., 3, 363 (1995).
[65] S. Niki, P. J. Fons, A. Yamada, O. Hellman, T. Kurafuji, S. Chichibu, and H. Nakanishi, Appl. Phys. Lett., 69, 647 (1996).
[66] M. A. Contreras, Brian Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and Rommel Noufi, Prog. Photovoltaics, 7, 311 (1999).<311::AID-PIP274>3.0.CO;2-G
[67] Elif Arici, Dieter Meissner, F. Schӓffler, and N. Serdar Sariciftci, International Journal of Photoenergy, 5, 199 (2003).
[68] J. Yang, A. Banerjee, and S. Guha, ‘Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies’, Applied Physics Letters, 70, No. 22, 2975-2977 (1997).
[69] J. Meier, R. Flückiger, H. Keppner, and A. Shah, ‘Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior’, Applied Physics Letters, 65, No. 7, 860-862 (1994).
[70] C. S. Jiang, Y. F. Yan, H. R. Moutinho et al., ‘Phosphorus and boron doping effects on nanocrystalline formation in hydrogenated amorphous and nanocrystalline mixed-phase silicon thin films’, MRS Proceedings, 1153, Article ID A17-07 (2009).
[71] N. Vlachopoulos, P. Liska, J. Augustynski, and M. Grätzel, ‘Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films’, Journal of the American Chemical Society, 110, No. 4, 1216-1220 (1988).
[72] B. O’Regan, and M. Grätzel, ‘A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films’, Nature, 353, No. 6346, 737-740 (1991).
[73] M. Grätzel, ‘Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells’, Journal of Photochemistry and Photobiology A, 164, No. 1-3, 3-14 (2004).
[74] A. Tsukazaki, A. Ohtomo, T. Onuma et al., ‘Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO’, Nature Materials, 4, No. 1, 42-45 (2005).
[75] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science, 258, 1474 (1992).
[76] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, ‘Hybrid nanorod-polymer solar cells’, Science, 295, No. 5564, 2425-2427 (2002).
[77] A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, ‘Photosensitization of nanoporous TiO2 electrodes with InP quantum dots’, Langmuir, 14, No. 12, 3153-3156 (1998).
[78] A. P. Alivisatos, ‘Semiconductor clusters, nanocrystals, and quantum dots’, Science, 271, No. 5251, 933-937 (1996).
[79] E. Arici, N. S. Sariciftci, and D. Meissner, ‘Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices’, Advanced Functional Materials, 13, No. 2, 165-170 (2003).
[80] N. C. Greenham, X. Peng, and A. P. Alivisatos, ‘Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity’, Physical Review B: Condensed Matter and Materials Physics, 54, No. 24, 17628-17637 (1996).
[81] V. Gonzalez-Pedro, E. J. Juárez-Pérez, W.-S. Arsyad, et al., ‘General working principles of CH3NH3PbX3 perovskite solar cells’, Nano Letters, 14, No. 2, 888-893 (2014).
[82] M. Liu, M. B. Johnston, and H. J. Snaith, ‘Efficient planar heterojunction perovskite solar cells by vapour deposition’, Nature, 501, No. 7467, 395-398 (2013).
[83] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, ‘Organometal halide perovskites as visible-light sensitizers for photovoltaic cells’, Journal of the American Chemical Society, 131, No. 17, 6050-6051 (2009).
[84] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, ‘6.5% efficient perovskite quantum-dot-sensitized solar cell’, Nanoscale, 3, No. 10, 4088-4093 (2011).
[85] H.-S. Kim, C.-R. Lee, J.-H. Im et al., ‘Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%’, Scientific Reports, 2, Article 591 (2012).
[86] N.-G. Park, ‘Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell’, The Journal of Physical Chemistry Letters, 4, No. 15, 2423-2429 (2013).
[87] O. Malinkiewicz, A. Yella, Y. H. Lee et al., ‘Perovskite solar cells employing organic charge-transport layers’, Nature Photonics, 8, No. 2, 128-132 (2014).
[88] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, Research and Applications, 11, 225 (1999).
[89] X. Wu, J. C. Kane, R. G. Dhere, C. DeHart, D. S. Albin, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, and P. Sheldon, Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, 995 (2002).
[90] A. N. Tiwari, M. Krejci, F. J. Haug, and H. Zogg, Research and Applications, 7, 393 (1999).
[91] J. R. Tuttle, A. Szalaj, and J. A. Keane, Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, 1042 (2000).
[92] I. Matulionis, S. Han, J. A. Drayton, K. J. Price, and A.D. Compaan, Proceedings of the 2001 MRS Spring Meeting, San Francisco, 1 (2001).
[93] A. Romeo, M. Arnold, D. L. Batzner, and H. Zogg, Proceedings of the PV in Europe-From PV Technology to Energy Solutions Conference and Exhibition, 377 (2002).
[94] D. L. Batzner, A. Romeo, M. Terheggen, M. Dobeli,H. Zogg, and A.N. Tiwari, Thin Solid Films, 451-452, 536 (2004).
[95] K. W. J. Barnham, and G. Duggan, ‘A new approach to high-efficiency multi-band-gap solar cells’, Journal of Applied Physics, 67, No. 7, 3490-3493 (1990).
[96] J. Nelson, M. Paxman, K. W. J. Barnham, J. S. Roberts, and C. Button, ‘Steady-state carrier escape from single quantum well’, IEEE Journal of Quantum Electronics, 29, No. 6, 1460-1468 (1993).
[97] J. Barnes, J. Nelson, K. W. J. Barnham et al., ‘Characterization of GaAs/InGaAs quantum wells using photocurrent spectroscopy’, Journal of Applied Physics, 79, No. 10, 7775-7779 (1996).
[98] I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, ‘Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes’, Applied Physics Letters, 74, No. 19, 2812-2814 (1999).
[99] P. R. Griffin, J. Barnes, K. W. J. Barnham et al., ‘Effect of strain relaxation on forward bias dark currents in GaAs/InGaAs multiquantum well p-i-n diodes’, Journal of Applied Physics, 80, No. 10, 5815-5820 (1996).
[100] N. J. Ekins-Daukes, J. M. Barnes, K. W. J. Barnham et al., ‘Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells’, Solar Energy Materials and Solar Cells, 68, No. 1, 71-87 (2001).
[101] D. B. Bushnell, K. W. J. Barnham, J. P. Connolly et al., ‘Light-trapping structures for multi-quantum well solar cells’, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, 1035-1038 (2002).
[102] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, ‘Hybrid nanorod-polymer solar cells’, Science, 295, No. 5564, 2425-2427 (2002).
[103] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, ‘Nanowire dye-sensitized solar cells’, Nature Materials, 4, No. 6, 455-459 (2005).
[104] S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, ‘Excellent antireflection properties of vertical silicon nanowire arrays’, Solar Energy Materials & Solar Cells, 94, No. 9, 1506-1511 (2010).
[105] K.-Q. Peng, and S.-T. Lee, ‘Silicon nanowires for photovoltaic solar energy conversion’, Advanced Materials, 23, No. 2, 198-215 (2011).
[106] K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, ‘Aligned single-crystalline Si nanowire arrays for photovoltaic applications’, Small, 1, No. 11, 1062-1067 (2005).
[107] B. Tian, X. Zheng, T. J. Kempa et al., ‘Coaxial silicon nanowires as solar cells and nanoelectronic power sources’, Nature, 449, No. 7164, 885-889 (2007).
[108] E. C. Garnett, and P. Yang, ‘Silicon nanowire radial p-n junction solar cells’, Journal of the American Chemical Society, 130, No. 29, 9224-9225 (2008).
[109] D. C. Law, R. R. King, H. Yoon et al., ‘Future technology pathways of terrestrial III-V multijunction solar cells for concentrator photovoltaic systems’, Solar Energy Materials and Solar Cells, 94, No. 8, 1314-1318 (2010).
[110] G. Conibeer, M. Green, R. Corkish et al., ‘Silicon nanostructures for third generation photovoltaic solar cells’, Thin Solid Films, 511-512, 654-662 (2006).
[111] B. Zhang, Y. Yao, R. Patterson, S. Shrestha, M. A. Green, and G. Conibeer, ‘Electrical properties of conductive Ge nanocrystal thin films fabricated by low temperature in situ growth’, Nanotechnology, 22, No. 12, Article ID 125204 (2011).
[112] J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios et al., ‘PbSe nanocrystal excitonic solar cells’, Nano Letters, 9, No. 11, 3749-3755 (2009).
[113] F. Gao, M. A. Green, G. Conibeer et al., ‘Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing’, Nanotechnology, 19, No. 45, Article ID 455611 (2008).
[114] M. Buljan, U. V. Desnica, M. Ivanda et al., ‘Formation of three-dimensional quantum-dot superlattices in amorphous systems: experiments and Monte Carlo simulations’, Physical Review B: Condensed Matter and Materials Physics, 79, No. 3, Article ID 035310 (2009).
[115] M. Ardyanian, H. Rinnert, and M. Vergnat, ‘Structure and photoluminescence properties of evaporated GeOx/SiO2 multilayers’, Journal of Applied Physics, 100, No. 11, Article ID 113106 (2006).
[116] A. Luque, and A. Martí, ‘Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels’, Physical Review Letters, 78, No. 26, 5014-5017 (1997).
[117] A. Martí, L. Cuadra, and A. Luque, ‘Quantum dot intermediate band solar cell’, Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, USA, 940-943 (2000).
[118] G. W. Bryant, and G. Solomon, Optics of Quantum Dots and Wires, Artech House, Norwood, Mass, USA (2005).
[119] A. J. Nozik, A. Martí, and A. Luque, Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, Artech House, Series in Optics and Optoelectronics, Institute of Physics Publishing (2003).
[120] J. P. Loehr, and M. O. Manasreh, Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, Artech House, Boston, Mass, USA (1993).
[121] A. Martí, N. López, E. Antolín, et al., ‘Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell’, Thin Solid Films, 511, 638-644 (2006).
[122] R. D. Schaller, and V. I. Klimov, ‘High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion’, Physical Review Letters, 92, No. 18, 186601/1-4 (2004).
[123] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, ‘Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots’, Nano Letters, 5, No. 5, 873-878 (2005).
[124] N. J. Ekins-Daukes, C. B. Honsberg, and M. Yamaguchi, ‘Signature of Intermediate Band Materials from Luminescence Measurements’, Proceedings of the 31st Photovoltaic Specialists Conference, Orlando, 49-54 (2005).
[125] R. T. Ross, and A. J. Nozik, ‘Efficiency of hot-carrier solar energy converters’, Journal of Applied Physics, 53, No. 5, 3813-3818 (1982).
[126] J. F. Guillemoles, G. Conibeer, and M. A. Green, ‘Phononic engineering with nanostructures for hot carrier solar cells’, Proceedings of the 15th International Photovoltaic Science and Engineering Conference, Shanghai, China (2005).
[127] M. A. Green, Third Generation Solar Cells, Springer, Berlin, Germany (2003).
[128] G. J. Conibeer, C.-W. Jiang, D. König, S. Shrestha, T. Walsh, and M. A. Green, ‘Selective energy contacts for hot carrier solar cells’, Thin Solid Films, 516, No. 20, 6968-6973 (2008).
[129] D. Knig, K. Casalenuovo, Y. Takeda et al., ‘Hot carrier solar cells: principles, materials and design’, Physica E: Low-Dimensional Systems and Nanostructures, 42, No. 10, 2862-2866 (2010).
[130] A. J. Nozik, C. A. Parsons, D. J. Dunlavy, B. M. Keyes, and R. K. Ahrenkiel, ‘Dependence of hot carrier luminescence on barrier thickness in GaAs/AlGaAs superlattices and multiple quantum wells’, Solid State Communications, 75, No. 4, 297-301 (1990).
[131] D. J. Westland, J. F. Ryan, M. D. Scott, J. I. Davies, and J. R. Riffat, ‘Hot carrier energy loss rates in GaInAs/InP quantum wells’, Solid State Electronics, 31, No. 3-4, 431-434 (1988).
[132] Y. Rosenwaks, M. C. Hanna, D. H. Levi, D. M. Szmyd, R. K. Ahrenkiel, and A. J. Nozik, ‘Hot-carrier cooling in GaAs: quantum wells versus bulk’, Physical Review B, 48, No. 19, 14675-14678 (1993).
[133] G. Conibeer, R. Patterson, L. Huang et al., ‘Modelling of hot carrier solar cell absorbers’, Solar Energy Materials & Solar Cells, 94, No. 9, 1516-1521 (2010).
[134] G. J. Conibeer, D. König, M. A. Green, and J. F. Guillemoles, ‘Slowing of carrier cooling in hot carrier solar cells’, Thin Solid Films, 516, No. 20, 6948-6953 (2008).
[135] P. Aliberti, Y. Feng, Y. Takeda, S. K. Shrestha, M. A. Green, and G. Conibeer, ‘Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber’, Journal of Applied Physics, 108, No. 9, Article ID 094507 (2010).
[136] Y. Takeda, T. Ito, T. Motohiro, D. König, S. Shrestha, and G. Conibeer, ‘Hot carrier solar cells operating under practical conditions’, Journal of Applied Physics, 105, No. 7, Article ID 074905 (2009).
[137] A. Franceschetti, J. M. An, and A. Zunger, ‘Impact ionization can explain carrier multiplication in PbSe quantum dots’, Nano Letters, 6, No. 10, 2191-2195 (2006).
[138] D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, ‘Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics’, Journal of Physical Chemistry C, 113, No. 16, 6406-6410 (2009).
[139] V. Švrček, A. Slaoui, and J.-C. Muller, ‘Silicon nanocrystals as light converter for solar cells’, Thin Solid Films, 451-452, 384-388 (2004).
[140] Y. Kanamori, K. Hane, H. Sai, and H. Yugami, ‘100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask’, Applied Physics Letters, 78, No. 2, 142-143 (2001).
[141] J. Gjessing, E. S. Marstein, and A. Sudbø, ‘2D back-side diffraction grating for improved light trapping in thin silicon solar cells’, Optics Express, 18, No. 6, 5481-5495 (2010).
[142] Z. Yu, A. Raman, and S. Fan, ‘Fundamental limit of light trapping in grating structures’, Optics Express, 18, No. 19, A366-A380 (2010).
[143] Y. Park, E. Drouard, O. E. Daif et al., ‘Absorption enhancement using photonic crystals for silicon thin film solar cells’, Optics Express, 17, No. 16, 14312-14321 (2009).
[144] A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, ‘Plasmonic light-harvesting devices over the whole visible spectrum’, Nano Letters, 10, No. 7, 2574-2579 (2010).
[145] K. R. Catchpole, S. Mokkapati, F. Beck et al., ‘Plasmonics and nanophotonics for photovoltaics’, MRS Bulletin, 36, No. 6, 461-467 (2011).
[146] H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, ‘Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles’, Nano Letters, 12, No. 8, 4070-4076 (2012).