Advancement in simulation and modeling of organic solar cells


Advancement in simulation and modeling of organic solar cells

Pooja Agnihotria, M.Patel, A.Verma, S.Sahu, Sandeep Pathak, Sanjay Tiwaria

Organic solar cells (OSCs) has recently received a great impulse as it is safe & clean substitute for the existing fossil fuel power plants, can be manufactured by low temperature processes at low-cost with a promising energy balance. During the past years OSCs performance has improved significantly but needs further improvements. Simulations/modelling are powerful tools for optimization of OSCs, reveal new insights, and predict the behaviour, performance, limitations, stability, dependency of OSCs & maximum attainable efficiency. In this paper we review a chain of simulation models (optical/electrical) for modelling state of the art devices, corresponding development in recent years on the basis of device physics and working principle, analyzing photo-absorption, quantum efficiency, short-circuit current, open-circuit voltage and fill-factor of the device to meet photovoltaic needs.

Organic Solar Cells, Drift Diffusion Model, Photo-active Polymer, Non-uniform Generation, Exciton

Published online 8/2/2017, 24 pages


Part of Recent Advances in Photovoltaics

[1] A. J. Waldau, “PV Status Report 2003”, European Commission, EUR 20850 EN, 2003.
[2] Kallmann H, Pope M. “Photovoltaic effect in organic crystals.”, J Chem Phys, 1959, 30: 585–586
[3] Hosoya M, Oooka H,Nakao H, Gotanda T, Mori S, Shida N, Hayase R,Nakano Y, Saito M. “Organic thin film photovoltaic modules”, Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan 21–37, (2013).
[4] Tang C W. “2-layer organic photovoltaic cell”, Appl Phys Lett, 1986, 48: 183–185
[5] Peumans P, Yakimov A, Forrest S R. “Small molecular weight organic thin-film photodetectors and solar cells”, J Appl Phys, 93:3693–3723 (2003).
[6] Yu G, Gao J, Hummelen J C, et al. “Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science, 270:1789–1791 (1995)
[7] A.J. Heeger. “Nobel lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials”, Reviews of Modern Physics, 73:681, (2001)
[8] B. O’Regan and M. Gr¨atzel. “A low cost, high efficiency solar cell based on dyesensitised colloidal TiO2 films”, Nature, 353:737, (1991)
[9] H.Hoppe, N.S.Sariciftci. “Organic solar cells: An overview”, J. Mater. Res, (2004)
[10] B. A. Gregg and M. C. Hanna. “Comparing organic to inorganic photovoltaic cells: Theory, experiment and simulation”, J. Appl. Phys., 93:3605, (2002).
[11] J. Nelson. “The Physics of Solar Cells”, Imperial College Press, London, (2003).
[12] C. Shuttle, B.O’Regan, A.Ballantyne, J.Nelson, D.Bradley, J.Durrant, “Bimolecular recombination losses in poly thiophene:fullerene solar cells”, Phys.Rev.B:Condens.Matter 78, 113201, (2008).
[13] J. Guo, H.Ohkita, “Charge generation and recombination dynamics in poly(3- hexylthiophene)/fullerene blend films with different region regularities and morphologies”, Adv.Mater., 132, 6154–6164,(2010).
[14] M. Lenes, M.Morana, C.J.Brabec, P.W.M.Blom, “Recombination-limited photo currents in low bandgap polymer/fullerene solar cells”, Adv. Funct. Mater.19 1106–1111, (2009).
[15] K.J. Li, L.J. Li, J.C. Campbell, “Recombination lifetime of free polarons in polymer/fullerene bulk heterojunction solar cells”, J. Appl. Phys. 111, 034503 (2012).
[16] Z.He,C.Zhong, S.Su,M.Xu,H.Wu,Y.Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure”, Nat. Photonics 6:591–595, (2012).
[17] Jain, A., and Kapoor, A., “A new approach to study organic solar cell using Lambert W-function”, Sol. Energy Mater. Sol. Cells, 86, 197–205 (2005).
[18] Mazhari, B., “An improved solar cell circuit model for organic solar cells”, Sol. Energy Mater. Sol. Cells, 90,1021–1033 (2006).
[19] P. K. Watkins, A. B. Walker, and G. L. B. Verschoor, “Dynamical Monte Carlo modelling of organic solar cells: The dependence of internal quantum efficiency on morphology,” Nano Lett. 5, 1814–1818 (2005).
[20] Blom P W M, Mihailetchi V D, Koster L J A and Markov D E, Adv. Mater. 19, 1551 (2007).
[21] S. Singh,Z.Vardeny, “Ultrafasttransientspectroscopyofpolymer/fullerene blends for organic photovoltaic applications”, Materials 6, 897–910, (2013).
[22] L. Onsager, “Deviations from Ohm’s law in weak electrolytes”, J.Chem.Phys.2 599–615, (1934).
[23] C.L.Braun, “Electric field assisted dissociation of charge transfer states as a mechanism of photo carrier production”, J.Chem.Phys. 80, 4157–4161, (1984).
[24] L. Koster, E. Smits, V. Mihailetchi, P. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells”, Phys. Rev. B: Condens. Matter 72, 085205, (2005).
[25] V. Mihailetchi, L.Koster, J.Hummelen, P.Blom, “Photocurrent generation in polymer–fullerene bulk heterojunctions”, Phys. Rev. Lett. 93, 216601 (2004).
[26] Gummel H K. “A self-consistent iterative scheme for one-dimensional steady state transistor calculations”, IEEE Trans Electron Device, ED-11, 1964: 455–465
[27] J. P. Hugonin, P. Lalanne, “Reticolo software for grating analysis”, Institut d’Optique, Orsay, France (2005).
[28] E. Hecht (Ed.), Optics, fourth ed., Pearson, San Francisco, (2002).
[29] O.S. Heavens, ‘Optical Properties of Thin Solid Films”, Dover, New York, (1965).
[30] L.A.A.Pettersson,L.S.Roman,O.Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films”, J.Appl.Phys. 86, 487–496 (1999).
[31]F.Monestier, J.-J.Simon, P.Torchio, L.Escoubas, F.Flory, S.Bailly, Bettignies, S.Guillerez, C.Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend”, Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[32] G.F.Burkhard, E.T.Hoke, M.D.McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells’, Adv. Mater. 22, 3293–3297 (2010).
[33] Persson N K, Schubert M, Inganäs O. “Optical modeling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer”, Sol Energy Mater Sol Cells, 83: 169–186, (2004).
[34] J. A. Barker, C. M. Ramsdale, and N. C. Greenham, “Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices”, Physical Review, B 67, 075205 (2003).
[35] V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P.W.M. Blom, “Photocurrent Generation in Polymer-Fullerene Bulk Heterojunctions”, Physical Review Letters 93, 21 (2004).
[36] Pavel Schilinsky, Christoph Waldauf, Jens Hauch, and Christoph J. Brabec, “Simulation of light intensity dependent current characteristics of polymer solar cells”, Journal of Applied Physics, 95, 5 (2004).
[37] Florent Monestier, Jean-Jacques Simon, Philippe Torchio, Ludovic Escoubas, Francois Flory, Sandrine Bailly, Remi de Bettignies, Stephane Guillerez, Christophe Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend”, Solar Energy Materials & Solar Cells 91, 405–410 (2007).
[38] Gavin A Buxton and Nigel Clarke, “Computer simulation of polymer solar cells”, Modelling Simul. Mater. Sci. Eng., 15, 13–26 (2007).
[39] C. Groves, R. A. Marsh, and N. C. Greenham, “Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices”, The journal of Chemical Physics 129, 114903 (2008).
[40] JonnyWilliams and Alison B Walker, “Two-dimensional simulations of bulk heterojunction solar cell characteristics”, Nanotechnology 19, 424011, (2008).
[41] P. Junsangsri and F. Lombardi, “Modelling and extracting parameters of organic solar cells”, Electronics Letters, 46, 21 (2010).
[42] C. De Falco, M. Porro, R. Sacco, and M. Verri, “Multiscale Modelling and Simulation of Organic Solar Cells, arXiv:1206.1440v3 [math.NA] (2012).
[43] Biswajit Ray and Muhammad Ashraful Alam, “Achieving Fill Factor Above 80% in Organic Solar Cells by Charged Interface’, IEEE JOURNAL OF PHOTOVOLTAICS (2013).
[44] A. H. Fallahpour, A. Gagliardi, F. Santoni, D. Gentilini, A. Zampetti, M. Auf der Maur, and A. Di Carlo, “Modeling and simulation of energetically disordered organic solar cells”, Journal of Applied Physics, 116, 184502 (2014).
[45] Matthew L. Jones, Buddhapriya Chakrabarti, and Chris Groves, “Monte Carlo Simulation of Geminate Pair Recombination Dynamics in Organic Photovoltaic Devices: Multi-Exponential, Field-Dependent Kinetics and Its Interpretation”, J. Phys. Chem., 118, 85−91, (2014).
[46] M. Farrokhifar, A. Rostami, and N. Sadoogi, “Opto-Electrical Simulation of Organic Solar Cells”, IEEE, (2014).
[47] Hossein Movla, Amin Mohammadalizad Rafi, Nima Mohammadalizad Rafi, “A model for studying the performance of P3HT:PCBM organic bulk heterojunction solar cells’, Optik 126, 1429–1432 (2015).
[48] M. L. Inche Ibrahim,a Zubair Ahmad, and Khaulah Sulaiman, “Analytical expression for the current-voltage characteristics of organic bulk heterojunction solar cells”, AIP Advances 5, 027115 (2015).
[49] Davide Bartesaghi, Irene del Carmen Pe´rez, Juliane Kniepert, Steffen Roland, Mathieu Turbiez, Dieter Neher & L. Jan Anton Koster, “Competition between recombination and extraction of free charges determines the fill factor of organic solar cells”, Nature Communications | DOI: 10.1038/ncomms8083, (2015).
[50] V. I. Madogni, W. Yang, B. Kounouhéwa, M. Agbomahéna, S. A. Hounkpatin, C. N. Awanou, Dynamic, “Charge Photogeneration and Excitons Distribution Function in Organic Bulk Heterojunction Solar Cells”, Open Journal of Applied Sciences,5,509-525,(2015)