Photocatalysis: Present, past and future


Photocatalysis: Present, past and future

Thillai Sivakumar Natarajan and Rajesh J. Tayade

Photocatalysis is one of the effective catalytic processes with potential applications in solving the environmental pollution and energy crisis problems by degrading the pollutants, reducing the CO2 levels and production of sustainable hydrogen (H2) fuel, respectively, using semiconductors as a photocatalyst under irradiation of light. Various types of photocatalytic materials, reactors, and processes with efficient photocatalytic performance have been studied to fulfill the practical requirements. In this chapter, initially, we will briefly discuss the principle of photocatalysis, its application in pollutants abatements and energy production along with the basic requirements. Simultaneously, we will discuss the past and present state of art of the utilization of this potential technique in these applications. Finally we describe future viewpoint of this technique in these fields as well.

Photocatalysis, Pollutants Degradation, Water Splitting, H2 Production, CO2 Reduction, Irradiation

Published online 8/1/2017, 63 pages


Part of Inorganic Pollutants in Wastewater

[1] M.A. Montgomery, M. Elimelech, Water and sanitation in developing countries: Including health in the equation, Environ. Sci. Technol.41 (2007) 17-24.
[2] Information on
[3] Information on
[4] G. Centi, S. Perathoner, Towards solar fuels from water and CO2, ChemSusChem 3 (2010) 195-208.
[5] E.J. Maginn,What to do with CO2, J. Phys. Chem. Lett.24 (2010) 3478-3479.
[6] A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater, RSC Adv. 5 (2015) 30801-30818.
[7] K. Kumari, T.E. Abraham, Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast, Bioresour. Technol. 98 (2007) 1704-1710.
[8] E. Khan, M. Li, C. P. Huang, Hazardous waste treatment technologies, Water Environ. Res. 79 (2007) 1858-1902.
[9] W.H. Glaze, J.W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng. 9 (1987) 335-352.
[10] E.M. Aieta, K.M. Regan, J.S. Lang, L. McReynolds, J.W. Kang, W.H. Glaze, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: pilot scaleevaluations,J. Am. Water Works Association 80 (1988) 64-72.
[11] R. Andreozzi, V. Caprio, A.Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today 53(1999) 51-59.
[12] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(1972) 37-38.
[13] F. Steinbach, Heterogeneous photocatalysis, in:Catalysis, Springer-Verlag Berlin Heidelberg, Germany, 1972, pp. 117-154.
[14] M. Sciavello (Ed.), Photocatalysis and Environment: Trends and Applications, Kluwer Academic Publishers, Dordrecht,1988.
[15] N. Serpone, E. Pelizzetti (Eds.), Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989.
[16] J.-M. Herrmann, C. Guillard, P. Pichat, Heterogeneous photocatalysis: an emerging technology for water treatment, Catal. Today 17 (1993) 7-20.
[17] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357.
[18] A. Mills, R. H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc. Rev. 22 (1993) 417-425.
[19] A.L. Linsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.
[20] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modification, and applications, Chem. Rev. 107 (2007) 2891-2959.
[21] S. Sarkar, R. Das, H. Choi, C. Bhattacharjee, Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes- a short review, RSC Adv. 4 (2014) 57250-57266.
[22] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
[23] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
[24] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.
[25] S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today 147 (2009) 1-59.
[26] L.G. Devi, R. Kavitha, A review on non-metalion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B Environ. 140-141 (2013) 559-587.
[27] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res. 52 (2013) 3581-3599.
[28] K. Mogyorosi, I. Dekany, J.H. Fendler, Preparation, characterization of clay mineral intercalated titanium dioxide nanoparticles, Langmuir 19 (2003) 2938-2946.
[29] G.L. Puma, A. Bono, D. Krishnaiah, J.G. Collin, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapour deposition: a review paper, J. Hazard. Mater. 157 (2008) 209-219.
[30] E.P. Reddy, L. Davydov, P. Smirniotis, TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support, Appl. Catal. B: Environ. 42 (2003) 1-11.
[31] N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles, Int. J. Mol. Sci. 13 (2012) 12242-12258.
[32] L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu, W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performancevisible-light drivenphotocatalysts, J. Mater. Chem. 17 (2007) 2526-2532.
[33] A. Huizhong, D. Yi, W. Tianmin, W. Cong, H. Weichang, Z. Junying, Photocatalytic properties of BiOX (X = Cl, Br, and I), Rare Metals 27 (2008) 243-250.
[34] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2009) 76-80.
[35] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. S. Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R. L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater. 9 (2010) 559-564.
[36] C.G. Silva, A. Corma, H. Garcia, Metal-organic frameworks as semiconductors, J. Mater. Chem. 20 (2010) 3141-3156.
[37] S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans.39 (2010) 1488-1491.
[38] L. Zhang, K.-H. Wong, Z. Chen, J.C. Yu, J. Zhao, C. Hu, C.-Y. Chang, P.-K. Wong, AgBr-Ag-Bi2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components, Appl. Catal. A. Gen. 363 (2009) 221-229.
[39] J. Yu, S. Wang, J. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air, Phys. Chem. Chem. Phys. 15 (2013) 16883-16890.
[40] W.K. Jo, T.S. Natarajan, Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation, Chem. Eng. J 281 (2015) 549-565.
[41] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology-The U.S. department of energy’s carbon sequestration program, Inter. J Greenhouse Gas Control2 (2008) 9-20.
[42] N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah, P. Fennell, An overview of CO2 capture technologies, Energy Environ. Sci. 3 (2010) 1645-1669.
[43] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Vale, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustainable Energy Rev. 39 (2014) 426-443.
[44] M.Z. Jacobson, Review of solutions to global warming, air pollution, and energy security, Energy Environ. Sci. 2 (2009) 148-173.
[45] X. Xiaoding, J.A. Moulijn, Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products, Energy & Fuels10(1996) 305-325.
[46] T. Sakakura, J.-C. Choi, H. Yasuda, Transformation of carbon dioxide, Chem. Rev. 107 (2007) 2365-2387.
[47] S. Sankaranarayanan, S. Kannan, Carbon dioxide-a potential raw material for the production of fuel, fuel additives and bio-derived chemicals, Indian J. Chem. 51A (2012) 1252-1262.
[48] A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen, Acc. Chem. Res. 28 (1995) 141-145.
[49] J.A. Turner, Sustainable hydrogen production, Science 305 (2004) 972-974.
[50] L. Rovelli, K.R. Thampi, Solar water splitting using semiconductor systems. Chapter 1, in: Jacinto Sa (Eds). Fuel Production with Heterogeneous Catalysis. CRC Press, Taylor & Francis Group, UK, 2014, pp.1-62.
[51] K. Natarajan, T.S. Natarajan, R.I. Kureshy, H.C. Bajaj, W.-K. Jo, R.J. Tayade, Photocatalytic H2 production using semiconductor nanomaterials via water splitting-an overview, in: A. Al-Ahmed, M.K. Hossain, M. Afzaal, H.M. Bahaidarah (Eds.), Recent Advances in Renewable Energy Research, Adv. Mater. Res. Trans Tech Publications, Switzerland, 2015, pp. 130-156.
[52] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277 (1979) 637-638.
[53] M. Halmann, V.Katzir, E. Borgarello, J. Kiwi, Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide, Sol.Energy Mater. 10 (1984) 85-91.
[54] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic process for CO2 emission reduction from industrial flue gas streams, Ind. Eng. Chem. Res. 45 (2006) 2558-2568.
[55] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed. 52 (2013) 7372-7408.
[56] C.F. Goodeve, The absorption spectra and photosensitising activity of white pigments, Trans. Faraday Soc. 33 (1937) 340-347.
[57] S.M.C. Markham, Photocatalytic properties of oxides, Report of the New England Association of Chemistry Teachers, (1955) 540-543.
[58] J.H. Carey, J. Lawrence, H. M. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions, Bull. Environ. Contam. Toxicol. 16 (1976) 697-701.
[59] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, J. Am. Chem. Soc. 99 (1977) 303-304.
[60] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, J. Phys. Chem. 81 (1977) 1484-1488.
[61] G. Al-Sayyed, J.-C. D’Oliveira, P. Pichat, Semiconductor-sensitized photodegradation of 4-chlorophenol in water, J. Photochem Photobiol. A. Chem. 58 (1991) 99-114.
[62] V. Kandavelu, H. Kastien, K.R. Thampi, Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts, Appl. Catal. B. Environ. 48 (2004) 101-111.
[63] C.-C. Chen, H.-J. Fan, J.-L. Jan, Degradation pathways and efficiencies of acid blue 1 by photocatalytic reaction with ZnO nanopowder, J. Phys. Chem. C 112 (2008)11962-11972.
[64] C.H. Wu, Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems, Chemosphere 57 (2004) 601-608.
[65] B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Solar/UV-induced photocatalytic degradation of three commercial textile dyes, J. Hazard. Mater. 89 (2002) 303-317.
[66] C. Karunakaran, S. Senthilvelan, Photocatalysis with ZrO2: oxidation of aniline, J Mol. Catal. A. Chem. 233 (2005) 1-8.
[67] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobio. C: Photochem. Rev. 1 (2000) 1-21.
[68] S. Parra, S.E. Stanca, I. Guasaquillo, K.R. Thampi, Photocatalytic degradation of atrazine using suspended and supported TiO2, Appl. Catal. B: Environ. 51 (2004) 107-116.
[69] K. Kabra, R. Chaudhary, R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review, Ind. Eng. Chem. Res. 43 (2004) 7683-7696.
[70] K. Wang, J. Zhang, L. Lou, S. Yang, Y. Chen, UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions, J. Photochem. Photobio. A: Chem. 165 (2004) 201-207.
[71] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B: Environ. 49 (2004) 1-14.
[72] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2,Ind. Eng. Chem. Res. 45 (2006) 922-927.
[73] R.J. Tayade, P.K. Surolia, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2, Sci. Tech. Adv. Mater. 8 (2007) 455-462.
[74] M. Lam, J.C. Sin, A.R. Mohamed, Recent patents on photocatalysis over nanosized titanium dioxide, Recent Patents on Chem. Eng. 1 (2008) 209-219.
[75] P.K. Surolia, M.A. Lazar, R.J. Tayade, R.V. Jasra, Photocatalytic degradation of 3,3′-dimethylbiphenyl-4,4′-diamine (o-Tolidine) over nanocrystalline TiO2 synthesized by sol-gel, solution combustion, and hydrothermal methods, Ind. Eng. Chem. Res.47 (2008)5847-5855.
[76] R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng. 25 (2008) 64-72.
[77] R.S. Thakur, R. Chaudhary, C. Singh, Fundamentals and applications of the photocatalytic treatment for the removal of industrial organic pollutants and effects of operational parameters: A review, J. Renewable Sustainable Energy 2 (2010) 042701-(1-37).
[78] A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, J. Mol. Catal. A: Chem. 328 (2010) 8-26.
[79] H. Chen, C.E. Nanayakkara, V.H. Grassian,Titanium dioxide photocatalysis in atmospheric chemistry, Chem. Rev. 112 (2012) 5919-5948.
[80] M.A. Lazar, R.J. Tayade, H.C. Bajaj, R.V. Jasra, Correlation of surface properties and photocatalytic activity of nanocrystalline TiO2 on the synthesis route, Nano Hybrids 1 (2012) 57-80.
[81] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M Anpo, D. W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev. 114 (2014) 9919-9986.
[82] D.D. Dionysiou, G. Balasubramanian, M.T. Suidan, A.P. Khodadoust, I. Baudin, J.-M. Laine, Rotating disk photocatalytic reactor: development, characterization, and evaluation for the destruction of organic pollutants in water, Water Res. 34 (2000) 2927-2940.
[83] J. Zhao, X. Yang, Photocatalytic oxidation for indoor air purification: a literature review, Building Environ. 38 (2003) 645-654.
[84] K.V.S. Rao, M. Subrahmanyam, P. Boule, Immobilized TiO2 photocatalyst during long-term use: decrease of its activity, Appl. Catal. B: Environ. 49 (2004) 239-249.
[85] C.M. Ling, A.R. Mohamed, S. Bhatia, Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream, Chemosphere 57 (2004) 547-554.
[86] N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci. 295 (2006) 159-164.
[87] A. Danion, J. Disdier, C. Guillard, O. Paisse, N.J.-Renault, Photocatalytic degradation of imidazolinone fungicide in TiO2-coated optical fiber reactor, Appl. Catal. B: Environ. 62 (2006) 274-281.
[88] T.V. Gerven, G. Mul, J. Moulijn, A. Stankiewicz, A review of intensification of photocatalytic processes, Chem. Eng. Process. 46 (2007) 781-789.
[89] M. Birnie, S. Riffat, M. Gillott, Photocatalytic reactors: design for effective air purification, Int. J. Low-Carbon Tech. 1 (2006) 47-58.
[90] A.Y. Shan, T.I. Mohd. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review, Appl. Catal. A: Gen. 389 (2010) 1-8.
[91] C.S.L. Vegaa, B.S.Rosalesb, H. de Lasa, Energy efficiency limits in photo-CREC-air photocatalytic reactors, Chem. Eng. Sci. 156 (2016) 77-88.
[92] F. Chen, J. Zhao, Preparation and photocatalytic properties of a novel kind of loaded photocatalyst of TiO2/SiO2/γ-Fe2O3, Catal. Lett. 58 (1999) 245-247.
[93] V. Belessi, D. Lambropoulou, I. Konstantinou, R. Zboril, J. Tucek, D. Jancik, Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor, Appl. Catal. B Environ. 87 (2009) 181-189.
[94] T.A. Gad-allah, S. Kato, S. Satokawa, T. Kojima, Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): Parametric and kinetic studies, Desalination244 (2009) 1-11.
[95] K. Natarajan, P. Singh, H.C. Bajaj, R.J. Tayade, Facile synthesis of TiO2/ZnFe2O4 nanocomposite by sol-gel auto combustion method for superior visible light photocatalytic efficiency, Korean J. Chem. Eng. 33 (2016) 1788-1798.
[96] G. Mamba, A. Mishra, Advances in magnetically separable photocatalysts: smart, recyclable materials for water pollution mitigation, Catalysts6 (2016) 1-34.
[97] B.D. Johnson, High-power short-wave LED purifies air, Photon. Spectra 37 (2003) 111.
[98] D.H. Chen, X. Ye, K. Li, Oxidation of PCE with a UV LED Photocatalytic Reactor, Chem. Eng. Technol. 28 (2005) 95-97.
[99] W.Y. Wang, Y. Ku, Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation, Water Res. 40 (2006) 2249-2258.
[100] R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Ind. Eng. Chem. Res. 48 (2009) 10262-10267.
[101] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of rhodamine B dye, Chem. Eng. J169 (2011) 126-134.
[102] W.K. Jo, S.-S. Eun, S.-H. Shin, Feasibility of light-emitting diode uses for annular reactor inner-coated with TiO2 or nitrogen-doped TiO2 for control of dimethyl sulphide, Photochem. Photobiol. 87 (2011) 1016-1023.
[103] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Energy efficient UV-LED source and TiO2 nanotube array based reactor for photocatalytic application, Ind. Eng. Chem. Res. 50 (2011) 7753-7762.
[104] L.H. Levine, J.T. Richards, J.L. Coutts, R. Soler, F. Maxik, R.M. Wheeler, Feasibility of ultraviolet-light-emitting diodes as an alternative light source for photocatalysis, J. Air Waste Manag. Assoc. 61 (2011) 932-940.
[105] K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes, Chem. Eng. J 178 (2011) 40-49.
[106] R. Sharmin, M.B. Ray, Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air, J. Air Waste Manag. Assoc. 62 (2012) 1032-1039.
[107] M. Izadifard, G. Achari, C.H. Langford, Application of photocatalysts and LED light sources in drinking water treatment, Catalysts 3 (2013) 726-743.
[108] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Ultraviolet light emitting diode (UV-LED) source-based photocatalytic reactors for environmental remediation, in:Inamuddin (Eds), Advanced Functional Polymers and Composites. Volume 2, Nova Science Publishers, Inc. 2013, pp. 33-91.
[109] K. Dai, L. Lu, G. Dawson, Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue, J. Mater. Eng. Perfor. 22 (2013) 1035-1040.
[110] W.K. Jo, R.J. Tayade, New generation energy-efficient light source for photocatalysis LEDs for environmental applications, Ind. Eng. Chem. Res. 53 (2014) 2073-2084.
[111] W.K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy‐efficient light emitting diodes, Chinese J. Catal. 35 (2014) 1781-1792.
[112] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160-3163.
[113] T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration, J. Colloid Interface Sci. 433 (2014) 104-114.
[114] B. Wen, C. Liu, Y. Liu, Depositional characteristics of metal coating on single-crystal TiO2 nanowires, J. Phys. Chem. B 109 (2005) 12372-12375.
[115] S. Daothong, N. Songmee, S. Thongtem, P. Singjai, Size-controlled growth of TiO2 nanowires by oxidation of titanium substrates in the presence of ethanol vapor, Scripta Materialia 57 (2007) 567-570.
[116] Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: An important environmental engineering material, J. Environ. Sci. 26 (2014) 2139-2177.
[117] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Enhanced photocatalytic activity of TiO2-coated NaY and HY zeolites for the degradation of methylene Blue in water, Ind. Eng. Chem. Res. 46 (2007)369-376.
[118] S. Sato, J.M. White,Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2, J. Catal. 69 (1981) 128-139.
[119] N. Serpone, E. Borgarello, M. Grätzel, Visible light inducedgeneration of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer, J. Chem. Soc. Chem. Commun. (1984) 342-344.
[120] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol, and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. A. Chem. 85 (1995) 247-255.
[121] J. Zhou, Y. Zhang, X.S. Zhao, A.K. Ray, Photodegradation of benzoic acid over metal-doped TiO2, Ind. Eng. Chem. Res. 45 (2006) 3503-3511.
[122] P.K. Surolia, R.J. Tayade, R.V. Jasra, Effect of anions on the photocatalytic activity of Fe(III) salts impregnated TiO2, Ind. Eng. Chem. Res. 46 (2007) 6196-6203.
[123] S. Neatu, V.I. Parvulescu, G. Epure, E. Preda, V. Somoghi, A. Damin, S. Bordiga, A. Zecchina, Photo-degradation of yperite over V, Fe and Mn-doped titania-silica photocatalysts, Phys. Chem. Chem. Phys. 10 (2008) 6562-6570.
[124] R.J. Tayade, H.C. Bajaj, R.V. Jasra, Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts, Desalination 275 (2011) 160-165.
[125] S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chinese Sci. Bulletin 56 (2011) 1639-1657.
[126] S. Bingham, W.A. Daoud, Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping, J. Mater. Chem. 21 (2011) 2041-2050.
[127] S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis, J. Phys. Chem. Lett. 5 (2014) 2543-2554.
[128] S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr. Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243-2245.
[129] J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater. 14 (2002) 3808-3816.
[130] H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, Y. Yan, Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine, Chem. Mater. 16 (2004) 846-849.
[131] H. Zhao, F. Tian, R. Wang, R, Chen, A Review on bismuth-related nanomaterials for photocatalysis, Rev. Adv. Sci. Eng. 3 (2014) 3-27
[132] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25(2009) 10397-10401.
[133] K.M. Garadkar, A.A. Patil, P.P. Hankare, P.A. Chate, D.J. Sathe, S.D. Delekar, MoS2: Preparation and their characterization, J. Alloys Compounds 487 (2009) 786-789.
[134] K.K. Banger, M. H.-C. Jin, J. D. Harris, P.E. Fanwick, A.F. Hepp, A new facile route for the preparation of single-source precursors for bulk, thin-film, and nanocrystallite I−III−VI semiconductors, Inorg. Chem. 42 (2003) 7713-7715.
[135] P. Kanhere, Z. Chen, A review on visible light active perovskite-based photocatalysts, Molecules 19 (2014) 19995-20022.
[136] L. Ge, C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B Environ. 108-109 (2011) 100-107.
[137] J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism, J. Mater. Chem. A 1 (2013) 3083-3090.
[138] H. Yuan, J. Liu, J. Li, Y. Li, X. Wang, Y. Zhang, J. Jiang, S. Chen, C. Zhao, D. Qian, Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst, J. Colloid Interface Sci. 444 (2015) 58-66.
[139] A. Di Paola, M. Bellardita, R. Ceccato, L. Palmisano, F. Parrino, Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water, J. Phys. Chem. C 113 (2009) 15166-15174.
[140] L. Huang, Y. Li, H.Xu, Y.Xu, J.Xia, K.Wang, H. Li, X. Cheng, Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity, RSC Adv. 3 (2013) 22269-22279.
[141] S.P. Adhikari, Z.D. Hood, K.L. More, I. Ivanov, L. Zhang, M. Gross, A. Lachgar, Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites, RSC Adv. 5 (2015) 54998-55005.
[142] W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods, J. Phys. Chem. B 107 (2003) 1798-1803.
[143] N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity, ACS Appl. Mater. Interfaces 4 (2012) 3718-3723.
[144] J. Lua, Y. Wang, F. Liu, L. Zhang, S. Chai, Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances, Appl. Surf. Sci. 393 (2017) 180-190.
[145] S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite, Scientific Reports 6:31641 (2016) 1-11.
[146] R. Tang, H. Su, S. Duan, Y. Sun, L. Li, X. Zhang, S. Zeng, D. Sun, Enhanced visible-light-driven photocatalytic performances using Bi2WO6/MS (M = Cd, Zn) heterostructures: facile synthesis and photocatalytic mechanisms, RSC Adv. 5 (2015) 41949-41960.
[147] H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, D. Wang, Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst, ACS Appl. Mater. Interfaces 4 (2012) 4853-4857.
[148] D. Jiang, L. Chen, J. Zhu, M. Chen, W. Shi, J. Xie, Novel p–n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity, Dalton Trans. 42 (2013) 15726-15734.
[149] J. Xia, J. Di, S. Yin, H. Xu, J. Zhang, Y. Xu, L. Xu, H. Li, M, Ji, Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity, RSC Adv. 4 (2014) 82-90.
[150] J. Cao, C. Zhou, H. Lin, B. Xu, S. Chen, Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity, Appl. Surf. Sci. 284 (2013) 263-269.
[151] Y.S. Xu, W.D. Zhang, Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance, Dalton Trans. 42 (2013) 1094-1101.
[152] X. Wang, Y. Lin, X. Ding, J. Jiang, Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles, J. Alloys Compounds 509 (2011) 6585-6588.
[153] M. Xiong, L. Chen, Q. Yuan, J. He, S.-L. Luo, C.-T. Au, S.-F. Yin, Facile fabrication and enhanced photosensitized degradation performance of the g-C3N4–Bi2O2CO3 composite, Dalton Trans. 43 (2014) 8331-8337.
[154] H. Xu, Y. Xu, H. Li, J. Xia, J. Xiong, S. Yin, C. Huang, H. Wan, Synthesis, characterization and photocatalytic property of AgBr/BiPO4 heterojunction photocatalyst, Dalton Trans. 41 (2012) 3387-3394.
[155] M. Lu, G. Yuan, Z. Wang, Y. Wang, J. Guo, Synthesis of BiPO4/Bi2S3 heterojunction with enhanced photocatalytic activity under visible-light irradiation, Nanoscale Res. Let. 10:385 (2015) 1-7.
[156] T. Wang, W.Quan, D. Jiang, L. Chen, D. Li, S. Meng, M. Chen, Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity, Chem. Eng. J 300 (2016) 280-290.
[157] O. Mehraj, B.M. Pirzada, N.A. Mir, S. Sultana, S. Sabir, Ag2S sensitized mesoporous Bi2WO6 architectures with enhanced visible light photocatalytic activity and recycling properties, RSC Adv. 5 (2015) 42910-42921.
[158] Y. Deng, L. Tang, G. Zeng, J. Wang, Y. Zhou, J. Wang, J. Tang, Y. Liu, B. Peng, F. Chen, Facile fabrication of a direct Z-scheme Ag2CrO4/g-C3N4 photocatalyst with enhanced visible light photocatalytic activity, J Mol. Catal. A: Chem. 421 (2016) 209-221.
[159] J. Bao, S. Guo, J.Gao, T. Hu, L. Yang, C. Liu, J. Peng, C.Jiang, Synthesis of Ag2CO3/Bi2WO6 heterojunctions with enhanced photocatalytic activity and cycling stability, RSC Adv. 5 (2015) 97195-97204.
[160] C. Zhu, L. Zhang, B. Jiang, J. Zheng, P. Hu, S. Li, M. Wu, W. Wu, Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation, Appl. Surf. Sci. 377 (2016) 99-108.
[161] H. Meng, T. Wang, X. Yu, Y. Zhu, Y. Zhang, BiOCl/SnS2 hollow spheres for the photocatalytic degradation of waste water, RSC Adv. 5 (2015) 107088-107097.
[162] M. Sun, Q. Zhao, C. Du, Z. Liu, Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors, RSC Adv. 5 (2015) 22740-22752.
[163] C. Shifu, J. Lei, T. Wenming, F, Xianliang, Fabrication, characterization and mechanism of a novel Z-scheme photocatalyst NaNbO3/WO3 with enhanced photocatalytic activity, Dalton Trans. 42 (2013) 10759-10768.
[164] Y. Yao, G. Wu, F. Lu, S. Wang, Y. Hu, J. Zhang, W. Huang, F. Wei, Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light, Environ. Sci. Pollut. Res. 23 (2016) 21833-21845.
[165] K.J. McDonald, K.-S. Choi, Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater. 23 (2011) 4863-4869.
[166] R. Shao, X. Zeng, Z. Cao, H. Dong, L. Wang, F. Wang, J. Liu, Z. Li, Q. Liang, A novel Ag3PO4/Nb2O5 fiber composite with enhanced photocatalytic performance and stability, RSC Adv. 5 (2015) 102101-102107.
[167] Y. Deng, Y. Chen, B. Chen, J. Ma, Preparation, characterization and photocatalytic activity of CuBi2O4/NaTaO3 coupled photocatalysts, J. Alloys Compounds 559 (2013) 116-122.
[168] W.K. Jo, T.S. Natarajan, Facile synthesis of novel redox-mediator-free direct Z‑scheme CaIn2S4 marigold-flower-like/TiO2 photocatalysts with superior photocatalytic efficiency, ACS Appl. Mater. Interfaces 7 (2015) 17138-17154.
[169] S. Peng, L. Li, Y.Wu, L. Jia, L.Tian, M. Srinivasan, S. Ramakrishna, Q. Yan, S. G. Mhaisalkar, Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance, CrystEngComm 15 (2013) 1922-1930.
[170] Z. Mei, S. Ouyang, D.-M. Tang, T. Kako, D. Golberg, J. Ye, An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation, Dalton Trans. 42 (2013) 2687-2690.
[171] J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures, ACS Appl. Mater. Interfaces 4 (2012) 424−430.
[172] Y. Guo, G. Zhang, J. Liu, Y. Zhang, Hierarchically structured α-Fe2O3/Bi2WO6 composite for photocatalytic degradation of organic contaminants under visible light irradiation, RSC Adv. 3 (2013) 2963-2970.
[173] Y. Guo, G. Zhang, H. Gan, Y. Zhang, Micro/nano-structured CaWO4/Bi2WO6 composite: synthesis, characterization and photocatalytic properties for degradation of organic contaminants, Dalton Trans. 41 (2012) 12697-12703.
[174] W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang, H. Shia, p–n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance, Dalton Trans. 43 (2014) 6735-6743.
[175] B. Ohtani, Photocatalysis A to Z-What we know and what we don’t know in ascientificsense, J. Photochem. Photobiol C: Photochem Rev. 11 (2010) 157-158.
[176] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater. 5 (2006) 782-786.
[177] D. Ma, J.Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity, Chem. Eng. J 290 (2016) 136-146.
[178] T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation, J. Phys. Chem. C, Lett. 111 (2007) 7574-7577.
[179] W.K. Jo, J.Y. Lee, T.S. Natarajan, Fabrication of hierarchically structured novel redox-mediator-free ZnIn2S4 marigold flower/Bi2WO6 flower-like direct Z-scheme nanocomposite photocatalysts with superior visible light photocatalytic efficiency, Phys. Chem. Chem. Phys. 18 (2016) 1000-1016.
[180] R. Zamiri, H.A. Ahangar, D.M. Tobaldi, A. Rebelo, M.P. Seabra, M. Shabani, J.M.F. Ferreira,Fabricating and characterising ZnO–ZnS–Ag2S ternary nanostructures with efficient solar-light photocatalytic activity, Phys. Chem. Chem. Phys. 16 (2014) 22418-22425.
[181] J. Li, H. Hao, Z. Zhu, Construction of g-C3N4-WO3-Bi2WO6 double Z-scheme system with enhanced photoelectrochemical performance, Mater. Let. 168 (2016) 180-183.
[182] J. Li, H. Hao, J. Zhou, Z. Zhu, g-C3N4 modified flower-like WO3–Bi2WO6 microspheres with enhanced photoelectrocatalytic activity, New J. Chem. 40 (2016) 9638-9647.
[183] W.K. Jo, T.S. Natarajan, Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4)- graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer, J. Colloid Interface Sci. 482 (2016) 58-72.
[184] S. Yin, B. Liu, P. Zhang, T. Morikawa, K.Yamanaka, T. Sato, Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading, J. Phys. Chem. C 112 (2008) 12425-12431.
[185] Y. Sun, W. Wang, L. Zhang, S. Sun, The photocatalysis of Bi2MoO6 under the irradiation of blue LED, Mater. Res. Bulletin 48 (2013) 4357-4361.
[186] K. Natarajan, H.C. Bajaj, R.J. Tayade, Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplates for RhB dye degradation under LED irradiation, J. Ind. Eng. Chem. 34 (2016) 146-156.
[187] M. Schroder, Functional metal-organic frameworks: gas storage, separation and catalysis, Springer-Verlag Berlin Heidelberg, Germany, 2010.
[188] C.-F. Zhang, L.-G. Qiu, F. Ke, Y-J. Zhu, Y.-P. Yuan, G.-S. Xu, X. Jiang, A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye, J. Mater. Chem. A 1 (2013) 14329-14334.
[189] T. Zhang, W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev. 43 (2014) 5982-5993.
[190] C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang,G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energy Environ. Sci. 7 (2014) 2831-2867.
[191] Y. Li, H. Xu, S. Ouyang,J. Ye, Metal-organic frameworks for photocatalysis, Phys. Chem. Chem. Phys.18 (2016)7563-7572.
[192] M. Alvaro, E. Carbonell, B. Ferrer, F.X.L. Xamena, H. Garcia, Semiconductor behavior of a metal-organic framework (MOF), Chem. Eur. J. 13 (2007) 5106 -5112.
[193] F.X.L. Xamena, A. Corma, H. Garcia, Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors, J. Phys. Chem. C 111 (2007) 80-85.
[194] P. Mahata, G. Madras, S. Natarajan, Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds, J. Phys. Chem. B 110 (2006)13759-13768.
[195] R. Das, P. Pachfule, R. Banerjee, P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides, Nanoscale 4 (2012) 591-599.
[196] Y. Gu, K. Cheng, Y. Wu, Y. Wang, C. Morlay, F. Li,Metal–organic framework-templated synthesis of bifunctional N-doped TiO2-carbon nanotablets via solid-state thermolysis,ACS Sustainable Chem. Eng. 4 (2016) 6744-6753.
[197] M. Gratzel, Energy resources through photochemistry and catalysis, academic press, New York, 1983.
[198] F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater. 20 (2008) 35-54.
[199] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting Chem. Soc. Rev. 38 (2009) 253-278.
[200] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev.110 (2010)6503-6570.
[201] J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets, J. Phys. Chem. C114 (2010) 13118-13125.
[202] M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles, Nat. Chem. 3 (2011) 489-492.
[203] S. Onsuratoom, T. Puangpetch, S. Chavadej, Comparative investigation of hydrogen production over Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts, Chem. Eng. J 173 (2011) 667-675.
[204] A.A. Ismail, D.W. Bahnemann, Photochemical splitting of water for hydrogen production by photocatalysis: A review, Sol. Energy Mater. Sol. Cells 128 (2014) 85-101.
[205] L. Qin, G. Si, X. Li, S.-Z. Kang, Synergetic effect of Cu–Pt bimetallic cocatalyst on SrTiO3 for efficient photocatalytic hydrogen production from water, RSC Adv. 5 (2015) 102593-102598.
[206] S. Sato, J.M. White, Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2, J. Catal. 69 (1981) 128-139.
[207] K. Yamaguti, S.Sato, Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc., Faraday Trans. 1, 81 (1985) 1237-1246.
[208] K. Sayama, H. Arakawa, Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis, J. Photochem. Photobiol. A: Chem. 77 (1994) 243-247.
[209] A. Kudo, Photocatalyst materials for water splitting, Catal. Surv. Asia 7 (2003) 31-38.
[210] Z. Zou, H. Arakawa, Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts, J. Photochem. Photobiol. A. Chem.158 (2003) 145-162.
[211] M. Matsumura, S. Furukawa, Y. Saho, H. Tsubomura, Cadmium sulfide photocatalyzed hydrogen production from aqueous solutions of sulfite: effect of crystal structure and preparation method of the catalyst, J. Phys. Chem. 89 (1985) 1327-1329.
[212] J.R. Harbour, R. Wolkow, M.L. Hair, Effect of platinization on the photoproperties of cadmium sulfide pigments in dispersion. Determination by hydrogen evolution, oxygen uptake, and electron spin resonance spectroscopy, J. Phys. Chem. 85 (1981) 4026-4029.
[213] J.F. Reber, M. Rusek, Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulphide, J. Phys. Chem. 90 (1986)824-834.
[214] J. Yu, J. Zhang, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1−xCdxS solid solution, Green Chem. 12 (2010) 1611-1614.
[215] K. Kalyanasundaram, E. Borgarello, D. Duonghong, M. Gratzel, Cleavage of water by visible-light irradiation of colloidal CdS Solutions; inhibition of photocorrosion by RuO2, Angew. Chem. Int. Ed Eng. 20 (1981) 987-988.
[216] K. Kobayakawa, A. Teranishi, T. Tsurumaki, Y. Sato, A. Fujishima, Photocatalytic activity of CuInS2 and CuIn5S8, Electrochim. Acta 37 (1992) 465-481.
[217] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catal. Lett. 53 (1998) 229-230.
[218] G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm), Chem. Commun. (2002) 1698-1699.
[219] K. Maeda, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, J. Phys. Chem. C 111 (2007) 7851-7861.
[220] R. Abe, M. Higashi, K. Domen, Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation, J. Am. Chem. Soc. 132 (2010) 11828-11829.
[221] M. Higashi, K. Domen, R. Abe, Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation, J. Am. Chem. Soc. 134 (2012) 6968-6971.
[222] Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method, Chem. Commun. (2003) 2142-2143.
[223] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, Biomimetic hydrogen evolution:  MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127 (2005) 5308-5309.
[224] J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang, L. Guo, In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production, Appl. Catal. B: Environ. 152-153 (2014) 335-341.
[225] H. Zhao, Y. Dong, P. Jiang, G. Wang, H. Miao, R. Wu, L. Kong, J. Zhang, C. Zhang, Light-assisted preparation of a ZnO/CdS nanocomposite for enhanced photocatalytic H2 evolution: An insight into importance of in situ generated ZnS, ACS Sustainable Chem. Eng. 3 (2015) 969-977.
[226] D. Zhao, C.F. Yang, Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells, Renewable Sustainable Energy Rev. 54 (2016) 1048-1059.
[227] Y. Xu, Y. Huang, B. Zhang, Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides, Inorg. Chem. Front. 3 (2016) 591-615.
[228] W.K. Jo, N.C.S. Selvam, Fabrication of photostable ternary CdS/MoS2/MWCNTs hybridphotocatalysts with enhanced H2 generation activity, Appl. Catal. A: Gen. 525 (2016) 9-22.
[229] P.V. Kamat, Graphene-based nanoassemblies for energy conversion, J. Phys. Chem. Lett. 2 (2011) 242-251.
[230] Q. Xiang, J. Yu, Graphene-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett. 4 (2013) 753-759.
[231] R. Abe, Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation, Bull. Chem. Soc. Jpn. 84 (2011) 1000-1030.
[232] R. Abe, K. Sayama, K. Domen, H.Arakawa, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator, Chem. Phys. Letts. 344 (2001) 339-344.
[233] H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation, Chem. Lett. 33 (2004) 1348-1349.
[234] Y. Sasaki, A. Iwase, H. Kato, A. Kudo, The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation, J. Catal. 259 (2008) 133-137.
[235] M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm), Chem. Lett. 37 (2008) 138-139. [236] X. Ma, Q. Jiang, W. Guo, M. Zheng, W. Xu, F. Ma, B. Hou, Fabrication of g-C3N4/Au/CdZnS Z-scheme photocatalyst to enhance photocatalysis performance, RSC Adv. 6 (2016) 28263-28269. [237] D. Lu, H. Wang, X. Zhao, K.K. Kondamareddy, J. Ding, C. Li, P. Fang, Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen, ACS Sustainable Chem. Eng. 5 (2017) 1436-1445. [238] Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator, J. Phys. Chem. C 113 (2009)17536-17542. [239] G. Zhao, X. Huang, F. Fina, G. Zhang, J.T.S. Irvine, Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light, Catal. Sci. Technol. 5 (2015) 3416-3422. [240] F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation, Appl. Catal. B: Environ. 201 (2017) 77-83. [241] J.S. Jang, S.H. Choi, D.H. Kim, J.W. Jang, K.S. Lee, J.S. Lee, Enhanced photocatalytic hydrogen production from water−methanol solution by nickel intercalated into titanate nanotube, J. Phys. Chem. C113 (2009) 8990-8996. [242] J. Yu, J. Ran, Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2, Energy Environ. Sci. 4 (2011) 1364-1371. [243] H. Wender, R. V. Gonçalves, C.S.B. Dias, M.J.M. Zapata, L.F. Zagonel, E. C. Mendonça, S.R. Teixeira, F. Garcia, Photocatalytic hydrogen production of Co(OH)2 nanoparticle-coated α-Fe2O3 nanorings, Nanoscale 5 (2013) 9310-9316. [244] Y.-P. Yuan, S.-W. Cao, L.-S. Yin, L. Xu, C. Xu, NiS2 co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation, Int. J. Hydrogen Energy 38 (2013) 7218-7223. [245] J. Wang, B. Li, J.Z. Chen, N. Li, J.F. Zheng, J.H. Zhao, Z.P. Zhu, Enhanced photocatalytic H2-production activity of CdxZn1−xS nanocrystals by surface loading MS (M = Ni, Co, Cu) species, Appl. Surf. Sci. 259 (2012)118-123. [246] J. Yu, Y. Hai, B. Cheng, Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification, J. Phys. Chem. C 115 (2011) 4953-4958. [247] Y.-J. Yuan, H.-W. Lu, Z.-T. Yu, Z.-G. Zou, Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production, ChemSusChem 8 (2015) 4113- 4127. [248] K. Chang, X. Hai, J. Ye, Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production, Adv. Energy Mater. 6:1502555 (2016) 1-21. [249] Y. Li, G. Lu, S. Li, Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2, Appl. Catal. A: Gen. 214 (2001) 179-185. [250] Y. Li, Y. Xie, S. Peng, G. Lu, S. Li, Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2, Chemosphere 63 (2006) 1312-1318. [251] J. Kim, W. Choi, Hydrogen producing water treatment through solar photocatalysis, Energy Environ. Sci. 3 (2010) 1042-1045. [252] J. Kim, D.M. Satoca, W. Choi, Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components, Energy Environ. Sci. 5 (2012) 7647-7656. [253] Y. Li, K. Zhang, S. Peng, G. Lu, S. Li, Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/ZnIn2S4 under visible light irradiation, J Mol. Catal. A: Chem. 363-364 (2012) 354-361. [254] W. Zhang, Y. Li, C. Wang, P. Wang, Q. Wang, Energy recovery during advanced wastewater treatment: Simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis, Water Res. 47 (2013) 1480-1490. [255] J. Kim, Y. Park, H. Park, Solar hydrogen production coupled with the degradation of a dye pollutant using TiO2 modified with platinum and nafion, Inter. J Photoenergy, Article ID 324859, 2014 (2014) 1-9. [256] M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, Nature 275 (1978) 115-116. [257] J.C. Hemminger, R. Carr, G.A. Somorjai, The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane, Chem. Phys. Lett.57 (1978) 100-104. [258] K. Tennakone, Photoreduction of carbonic acid by mercury coated n-titanium dioxide, Solar Energy Mater. 10 (1984) 235-238. [259] B.-J. Liu, T. Torimoto, H. Matsumoto, H. Yoneyama, Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices, J. Photochem. Photobiol. A: Chem. 108 (1997) 187-192. [260] I.-H. Tseng, W.-C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal. B: Environ. 37 (2002) 37-48. [261] I.-H. Tseng, J.C.S Wu, H.-Y. Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal. 221 (2004) 432-440. [262] Y. Ku, W.-H. Lee, W.-Y. Wang, Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process, J. Mol. Catal. A: Chem. 212 (2004) 191-196. [263] M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts, J. Electroanal. Chem. 396 (1995) 21-26. [264] H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves, Catal. Today 45 (1998) 221-227. [265] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S. G. Zhang, Y. Ichihashi, D.R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catal. Today 44 (1998) 327-332. [266] K. Ikeue, H. Yamashita, M. Anpo, Photocatalytic Reduction of CO2 with H2O on titanium oxides prepared within the FSM-16 mesoporous zeolite, Chem. Lett. 28 (1999) 1135-1136. [267] K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: effect of the,hydrophobic and hydrophilic properties, J. Phys. Chem. B 105 (2001)8350-8355. [268] M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt, J. Phys. Chem. B 101 (1997)2632-2636. [269] S. Xie, Y. Wang, Q. Zhang, W. Fan, W. Deng, Y. Wang, Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO, Chem. Commun. 49 (2013) 2451-2453. [270] L. Liu, C. Zhao, H. Zhao, D. Pitts, Y. Li, Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability, Chem. Commun. 49 (2013) 3664-3666. [271] K. Hirano, K. Inoue, T. Yatsu, Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder, J. Photochem. Photobiol. A: Chem. 64 (1992) 255-258. [272] K. Kocia, K. Mateju, L. Obalovaa, S. Krejcikova, Z. Lacny, D. Placha, L. Capek, A. Hospodkova, O. Solcova, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2, Appl. Catal. B: Environ. 96 (2010) 239-244. [273] Z. Zhao, J. Fan, J. Wang, R. Li, Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst, Catal. Comm. 21 (2012) 32-37. [274] Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond, Coord. Chem. Rev. 257 (2013) 171-186. [275] W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion, Phys. Chem. Chem. Phys.15 (2013) 2632-2649. [276] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, J. Photochem. Photobiol. C: Photochem. Rev. 24 (2015) 16-42. [277] J. Wang, G. Ji, Y. Liu, M.A. Gondal, X. Chang, Cu2O/TiO2 heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO2 reduction to methanol, Catal. Comm. 46 (2014) 17-21. [278] M. A. Asi, C. He, M. Su, D. Xia, L. Lin, H. Deng, Y. Xiong, R. Qiu, X. Li, Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light, Catal. Today 175 (2011) 256-263. [279] Q.D. Truong, J.-Y. Liu, C.-C. Chung, Y.-C. Ling, Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst, Catal. Comm. 19 (2012) 85-89. [280] K. Tennakone, A.H. Jayatissa, S. Punchihewa, Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide, J. Photochem. Photobiol. A 49 (1989) 369-375. [281] Y. Matsumoto, M. Obata, J. Hombo, Photocatalytic reduction of carbon dioxide on p-type CaFe2O4powder, J. Phys. Chem. 98 (1994) 2950-2951. [282] Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M.-H. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst, Catal. Comm. 11 (2009) 210-213. [283] Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan, Z. Zou, High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light, ACS Appl. Mater. Interfaces 3 (2011) 3594-3601. [284] H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang, Y. Dai, An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol, Chem. Commun. 48 (2012) 9729-9731. [285] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides, ChemSusChem 6 (2013) 562-577. [286] W. Jiang, X. Yin, F. Xin, Y. Bi, Y. Liu, X. Li, Preparation of CdIn2S4 microspheres and application for photocatalytic reduction of carbon dioxide, Appl. Surf. Sci. 288 (2014) 138-142. [287] Z.-Y. Wang, H.-C. Chou, J. C.S.Wu, D. P. Tsai, G. Mul, CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy, Appl. Catal. A: Gen. 380 (2010) 172-177. [288] X. Li, H. Liu, D. Luo, J. Li, Y. Huang, H. Li, Y. Fang, Y. Xu, L. Zhu, Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation, Chem. Eng. J 180 (2012) 151-158. [289] X.J. Lv, W. F. Fu, C.Y. Hu, Y. Chen, W.B. Zhou, Photocatalytic reduction of CO2 with H2O over a graphene-modified NiOx–Ta2O5 composite photocatalyst: coupling yields of methanol and hydrogen, RSC Adv. 3 (2013) 1753-1757. [290] H. Liu, Z. Zhang, J. Meng, J. Zhang, Novel visible-light-driven CdIn2S4/mesoporous g-C3N4 hybrids for efficient photocatalytic reduction of CO2 to methanol, J. Mol. Catal. A: Chem. 430 (2017) 9-19. [291] T. Ohno, N. Murakami, T. Koyanagi, Y. Yang, Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light, J. CO2 Utilization 6 (2014) 17-25. [292] J.H. Kim, G. Magesh, H.J. Kang, M. Banu, J.H. Kim, J. Lee, J.S. Lee, Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2reduction to fuels, Nano Energy 15 (2015) 153-163. [293] D.-S. Lee, Y.-W. Chen, Photocatalytic reduction of carbon dioxide with water on InVO4 with NiO cocatalysts, J. CO2 Utilization 10 (2015) 1-6. [294] S. Sato, T. Morikawa, S. Saeki, T. Kajino, T, Motohiro, Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor, Angew. Chem. Int. Ed. 49 (2010) 5101-5105. [295] S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H. Tanaka, T. Kajino, Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts, J. Am. Chem. Soc. 133 (2011) 15240-15243. [296] T. Arai, S. Sato, T. Kajino, T. Morikawa, Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes, Energy Environ. Sci. 6 (2013) 1274-1282. [297] K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2, J. Am. Chem. Soc. 135 (2013) 4596-4599. [298] W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, J. Mater. Chem. A 3 (2015) 19936-19947. [299] J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity, Small11 (2015)5262-5271. [300] Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel, Environ. Sci. Technol. 49 (2015) 649-656. [301] J.-C. Wang, L. Zhang, W.-X. Fang, J. Ren, Y.-Y. Li, H.-C. Yao, J.-S. Wang, Z.-J. Li, Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation, ACS Appl. Mater. Interfaces 7 (2015) 8631-8639. [302] J.-C. Wang, H.-C. Yao, Z.-Y. Fan, L. Zhang, J.-S. Wang, S.-Q. Zang, Z.-J. Li, Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation, ACS Appl. Mater. Interfaces 8 (2016) 3765-3775. [303] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction, Angew. Chem. 124 (2012) 3420-3423. [304] D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks, Chem. Eur. J. 19 (2013) 14279-14285.

Related products