Improvements of Li4Ti5O12 Anode Material for Lithium-Ion Batteries

$15.95

Improvements of Li4Ti5O12 Anode Material for Lithium-Ion Batteries

Chunfu Lin

Li4Ti5O12 is a promising anode material for lithium-ion batteries due to its good safety performance and excellent cyclic stability. However, it suffers from three problems of poor (electronic and ionic) conductivity, small capacity and gassing. This chapter reviews the characteristics, the crystal structure, the electrochemical performances and the improvements of Li4Ti5O12. An insight into future research directions for Li4Ti5O12 is also provided.

Keywords
Lithium-Ion Battery, Anode, Li4Ti5O12, LIB Improvement, Electrochemical Performance

Published online 3/16/2017, 17 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Chunfu Lin, ‘Improvements of Li4Ti5O12 Anode Material for Lithium-Ion Batteries’, Materials Research Foundations, Vol. 12, pp 77-93, 2017

DOI: http://dx.doi.org/10.21741/9781945291272-4

The article was published as article 4 of the book Recent Advances in Energy Storage Materials and Devices

References
[1] M. Armand, J. M. Tarascon: Building better batteries, Nature 451 (2008) 652–657. https://doi.org/10.1038/451652a
[2] S. S. Zheng: The effect of the charging protocol on the cycle life of a Li-ion batteries, J. Power Sources 161 (2006) 1385–1391. https://doi.org/10.1016/j.jpowsour.2006.06.040
[3] C. F. Lin, C. Yang, S. W. Lin, J. B. Li: Titanium-containing complex oxides as anode materials for lithium-ion batteries: a review, Mater. Technol. 30 (2015) 192–202. https://doi.org/10.1080/10667857.2015.1107219
[4] T. Ohzuku, A. Ueda, N. Yamamoto: Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc. 142 (1995) 1431–1435. https://doi.org/10.1149/1.2048592
[5] C. F. Lin, X. Y. Fan, Y. L. Xin, F. Q. Cheng, M. O. Lai, H. H. Zhou, L. Lu: Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing particle size, J. Mater. Chem. A 2 (2014) 9982–9993. https://doi.org/10.1039/c4ta01163e
[6] C. F. Lin, M. O. Lai, L. Lu, H. H. Zhou, Y. L. Xin: Structure and high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery, J. Power Sources 244 (2013) 272–279. https://doi.org/10.1016/j.jpowsour.2013.01.056
[7] C. F. Lin, B. Ding, Y. L. Xin, F. Q. Cheng, M. O. Lai, L. Lu, H. H. Zhou: Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: synergistic effect of doping and compositing, J. Power Sources 248 (2014) 1034–1041. https://doi.org/10.1016/j.jpowsour.2013.09.120
[8] C. F. Lin, M. O. Lai, L. Lu, H. H. Zhou: Spinel Li4−2xCo3xTi5−xO12 (0 ≤ x ≤ 0.5) for lithium-ion batteries: crystal structures, material properties, and battery performances, J. Phys. Chem. C 118 (2014) 14246–14255. https://doi.org/10.1021/jp504152s
[9] C. F. Lin, S. F. Song, M. O. Lai, L. Lu: Li3.9Cu0.1Ti5O12/CNTs composite for the anodes of high-power lithium-ion batteries: intrinsic and extrinsic effects, Electrochim. Acta 143 (2014) 29–35. https://doi.org/10.1016/j.electacta.2014.07.122
[10] C. F. Lin, M. O. Lai, H. H. Zhou, L. Lu: Li3.33Cu1.005Ti4.665O12/CuO composite with P4332 space group for Li-ion batteries: synergistic effect of substituting and compositing, RSC Adv. 4 (2014) 31196–31200. https://doi.org/10.1039/C4RA03931A
[11] X. M. Chen, X. F. Guan, L. P. Li, G. S. Li: Defective mesoporous Li4Ti5O12−y: An advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C, J. Power Sources 210 (2012) 297–302. https://doi.org/10.1016/j.jpowsour.2012.03.014
[12] Y. C. Yang, B. H. Qiao, X. M. Yang, L. B. Fang, C. C. Pan, W. X. Song, H. S. Hou, X. B. Li: Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery, Adv. Funct. Mater. 24 (2014) 4349–4356. https://doi.org/10.1002/adfm.201304263
[13] M. Krajewski, M. Michalska, B. Hamankiewicz, D. Ziolkowska, K. P. Korona, J. B. Jasinski, M. Kaminska, L. Lipinska, A. Czerwinski: Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries, J. Power Sources 245 (2014) 764–771. https://doi.org/10.1016/j.jpowsour.2013.07.048
[14] W. L. Zhang, J. F. Li, Y. B. Guan, Y. Jin, W. T. Zhu, X. Guo, X. P. Qiu: Nano-Li4Ti5O12 with high rate performance synthesized by a glycerol assisted hydrothermal method, J. Power Sources 243 (2013) 661–667. https://doi.org/10.1016/j.jpowsour.2013.06.010
[15] A. Nugroho, S. J. Kim, K. Y. Chung, J. Kim: Synthesis of Li4Ti5O12 in supercritical water for Li-ion batteries: reaction mechanism and high-rate performance, Electrochim. Acta 78 (2012) 623–632. https://doi.org/10.1016/j.electacta.2012.06.060
[16] M. R. Jo, Y. S. Jung, Y. Kang: Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries, Nanoscale 4 (2012) 6870–6875. https://doi.org/10.1039/c2nr31675g
[17] Q. Zhou, L. Liu, J. L. Tan, Z. C. Yan, Z. F. Huang, X. Y. Wang: Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with superior electrochemical performance, J. Power Sources 283 (2015) 243–250. https://doi.org/10.1016/j.jpowsour.2015.02.061
[18] N. Li, T. Mei, Y. C. Zhu, L. L. Wang, J. W. Liang, X. Zhang, Y. T. Qian, K. B. Tang: Hydrothermal synthesis of layered Li1.81H0.19Ti2O5·xH2O nanosheets and their transformation to single-crystalline Li4Ti5O12 nanosheets as the anode materials for Li-ion batteries, CrystEngComm 14 (2012) 6435–6440. https://doi.org/10.1039/c2ce25900a
[19] Y. J. Sha, B. T. Zhao, R. Ran, R. Cai, Z. P. Shao: Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability, J. Mater. Chem. A 1 (2013) 13233–13243. https://doi.org/10.1039/c3ta12620j
[20] C. F. Lin, X. Y. Fan, Y. L. Xin, F. Q. Cheng, M. O. Lai, H. H. Zhou, L. Lu: Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances, Nanoscale 6 (2014) 6651–6660. https://doi.org/10.1039/c4nr00960f
[21] L. Yu, H. B. Wu, X. W. Lou: Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability, Adv. Mater. 25 (2013) 2296–2300. https://doi.org/10.1002/adma.201204912
[22] J. Cheng, R. C. Che, C. Y. Liang, J. W. Liu, M. Wang, J. J. Xu: Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries, Nano Res. 7 (2014) 1043–1053. https://doi.org/10.1007/s12274-014-0467-2
[23] J. W. Zhang, Y. R. Cai, J. Wu, J. M. Yao: Graphene oxide-confined synthesis of Li4Ti5O12 microspheres as high-performance anodes for lithium ion batteries, Electrochim. Acta 165 (2015) 422–429. https://doi.org/10.1016/j.electacta.2015.03.016
[24] J. Kim, M. Park, S. M. Hwang, Y. Heo, T. Liao, Z. Q. Sun, J. H. Park, K. J. Kim, G. Jeong, Y. Kim, J. H. Kim, S. X. Dou: Zr4+ Doping in Li4Ti5O12 anode for lithium-ion batteries open Li+ diffusion paths through structural imperfection, ChemSusChem 7 (2014) 1451–1457. https://doi.org/10.1002/cssc.201301393
[25] C. F. Lin, M. O. Lai, H. H. Zhou, L. Lu: Mesoporous Li4Ti5O12–x/C submicrospheres with comprehensively improved electrochemical performances for high-power lithium-ion batteries, Phys. Chem. Chem. Phys. 16 (2014) 24874–24883. https://doi.org/10.1039/C4CP03826F
[26] Y. Ma, B. Ding, G. Ji, J. Y. Lee: Carbon-encapsulated F‑doped Li4Ti5O12 as a high rate anode material for Li+ batteries, ACS Nano 7 (2013) 10870–10878. https://doi.org/10.1021/nn404311x
[27] J. Liu, K. P. Song, P. A. van Aken, J. Maier, Y. Yu: Self-supported Li4Ti5O12−C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries, Nano Lett. 14 (2014) 2597–2603. https://doi.org/10.1021/nl5004174
[28] L. F. Shen, B. Ding, P. Nie, G. Z. Cao, X. G. Zhang: Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles, Adv. Energy Mater. 3 (2013) 1484–1489. https://doi.org/10.1002/aenm.201300456
[29] X. F. Wang, B. Liu, X. J. Hou, Q. F. Wang, W. W. Li, D. Chen, G. Z. Shen: Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries, Nano Res. 7 (2014) 1073–1082. https://doi.org/10.1007/s12274-014-0470-7
[30] H. Ge, N. Li, D. Y. Li, C. S. Dai, D. L. Wang: Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation, J. Phys. Chem. C 113 (2009) 6324–6326. https://doi.org/10.1021/jp9017184
[31] C. F. Lin, S. J. Deng, H. Shen, G. Z. Wang, Y. F. Li, L. Yu, S. W. Lin, J. B. Li, L. Lu: Li5Cr9Ti4O24: a new anode material for lithium-ion batteries, J. Alloys Compd. 650 (2015) 616–621. https://doi.org/10.1016/j.jallcom.2015.08.070
[32] Y. B. He, B. H. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. D. Du, B. Zhang, Q. H. Yang, J. K. Kim, F. Y. Kang: Gassing in Li4Ti5O12-based batteries and its remedy, Sci. Rep. 2 (2012) 913. https://doi.org/10.1038/srep00913
[33] J. L. Guo, W. H. Zuo, Y. J. Cai, S. M. Chen, S. J. Zhang, J. P. Liu: A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature, J. Mater. Chem. A 3 (2015) 4938–4944. https://doi.org/10.1039/C4TA05660D