Effect of particle size on dielectric and photoluminescence spectroscopy of ZnS nanoparticles



Abstract. Nanoparticles of ZnS in thin film form have been synthesized by radio frequency magnetron sputtering technique on glass and Si substrates at substrate temperature 300 K. X-ray diffraction and selected area electron diffraction studies confirmed the formation of nanocrystalline cubic phase of ZnS in the films. TEM micrographs of the thin films revealed the manifestation of ZnS nanoparticles with sizes lying in the range 3.00 – 5.83 nm. The room temperature photoluminescence spectra of the films showed two peaks centered around 315 nm and 450 nm. We assigned the first peak due to bandgap transitions while the latter due to sulfur vacancy in the films. The composition analysis by energy dispersive X-rays also supported the existence of sulfur deficiency in the films. The dielectric property study showed high dielectric permittivity (85-100) at a higher frequency (>5 KHz).

ZnS Nanoparticles, Photoluminescence, Dielectric

Published online 12/10/2016, 4 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: P.K. GHOSH, ‘Effect of particle size on dielectric and photoluminescence spectroscopy of ZnS nanoparticles’, Materials Research Proceedings, Vol. 1, pp 1-4, 2016

DOI: http://dx.doi.org/10.21741/9781945291197-1

The article was published as article 1 of the book Dielectric Materials and Applications

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Nature (London) 375 (1995) 769. http://dx.doi.org/10.1038/375769a0
[2] P.D. Yang, C.M. Lieber, Science 273 (1996) 1836. http://dx.doi.org/10.1126/science.273.5283.1836
[3] M Bangal, S Ashtaputre, S Marathe, A Ethiraj, N Hebalkar, SW Gosavi, J Urban, SK Kulkarni, Semiconductor Nanoparticles. Hyperfine Interact. 160 (2005) 81-94. http://dx.doi.org/10.1007/s10751-005-9151-y
[4] CS Pathak, MK Mandal, V Agarwala. Mater. Sci.Semicond. Process. 16 (2013) 467-471. http://dx.doi.org/10.1016/j.mssp.2012.07.009
[5] Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett. 70 (1997) 3308. http://dx.doi.org/10.1063/1.119146
[6] P.G. Collins, A. Zettl, Appl. Phys. Lett. 69 (1996) 1969. http://dx.doi.org/10.1063/1.117638
[7] R.G. Forbes, Solid State Electron. 45/6 (2001) 779. http://dx.doi.org/10.1016/S0038-1101(00)00208-2
[8] Landolt–Bronstein, Numerical Data and Functional Relationships in Science and Technology, vol. 22a, Springer Verlag, Berlin, 1987, p. 168.
[9] S. Bhattacharya, S.K Saha, D Chakravorty, Appl. Phys. Lett. 76 (26), (2000.) 3896.
[10] P. K. Ghosh, M K Mitra, K. K. Chattopadhyay, Nanotechnology, 16, (2005) 1-6. http://dx.doi.org/10.1088/0957-4484/16/1/022
[11] Xue D, Kitamura K. Solid State Commun.122 (2002) 537-541. http://dx.doi.org/10.1016/S0038-1098(02)00180-1
[12] Smyth CP Acta. Cryst. 9 (1956)838-839. http://dx.doi.org/10.1107/S0365110X56002382
[13] Sagadevan Suresh, International Journal of Physical Sciences, Vol. 8(21), pp. 1121-1127, 9 June, 2013.
[14] S. A. Mastia, A. K. Sharmab and P. N. Vasambekarc, Advances in Applied Science Research 4(4) (2013)335-339
[15] B. Y. Geng,L. D. Zhang, G. Z. Wang, T. Xie, Y. G. Zhang and G. W. Meng, Appl. Phys. Lett. 84 (2004) 2157. http://dx.doi.org/10.1063/1.1687985
[16] N. I. Kovtyukhova, E. V. Buzaneva, C. C. Waraksa and T. E. Mallouk, Materials Science and Engineering B 69-70, (2000) 411. http://dx.doi.org/10.1016/S0921-5107(99)00312-8
[17] K. Sooklal,B. S. Cullum, S. M. Angel and C. J. Murphy, J. Phys. Chem.100, (1996) 4551. http://dx.doi.org/10.1021/jp952377a
[18] A. A. Bol and A. Meijerink, Phys. Rev. B 58 (1998) 15997. http://dx.doi.org/10.1103/PhysRevB.58.R15997
[19] I. Spanhel and M. A. Anderson, J. Am. Chem. Soc. 113 (1991) 2826. http://dx.doi.org/10.1021/ja00008a004