Novel Ceramic Materials, Chapter 13

$15.95

Synthesis, Structure and Magnetic Behavior of Ce-Doped Lanthanum Manganite Ceramics

N. Thenmozhi, R. Saravanan

The ceramic perovskite La0.88Ce0.12MnO3 has been synthesized using the solid state reaction method. The grown sample was characterized for its structural, optical, and magnetic properties using powder X-ray diffraction, UV–visible spectra and vibrating sample magnetometer (VSM) measurements. The Rietveld analysis of the X-Ray diffraction (XRD) profile clearly indicated that the XRD pattern is well fitted with an orthorhombic structure. The electronic structure of the synthesized sample has been studied through the maximum entropy method. The optical study gives the direct band energy gap value as 2.106 eV. VSM measurements, at room temperature show paramagnetic behavior of the prepared sample.

Keywords
Perovskite, X-ray diffraction, electronic structure, bandgap, magnetic properties

Published online 6/1/2016, 13 pages

DOI: 10.21741/9781945291036-13

Part of Novel Ceramic Materials

References
[1] Wong Jen Kuen, Lim Kean Pah, Abdul Halim Shaari, Chen Soo Kien, Ng SiauWei and Albert Gan Han Ming, Effect of Rare Earth Elements Substitution in La site forLaMnO3 Manganites, Pertanika J. Sci. & Technol. 20 (1): (2012) 81 – 88
[2] Mats Johnsson and Peter Lemmens, Crystallography and Chemistry of Perovskites, Handbook of Magnetism and Advanced Magnetic Materials. Edited by Helmut Kronmuller and Stuart Parkin. Volume 4: Novel Materials.2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7
[3] Kavita Bajaj, Vivas Bagwe, John Jesudasan, Pratap Raychaudhuri, Bandwidth control effects in electron doped manganiteLa0.7KxYxCe0.3MnO3 thin films, Solid State Communications, xx (2006) 1–4
[4] P. Mandal and S. Das, Transport properties of Ce-doped RMnO3 (R=La, Pr, and Nd) manganites, Phys. Rev. B 56, (1997) 15073
http://dx.doi.org/10.1103/PhysRevB.56.15073
[5] S. Das, A. Poddar. B. Roy, S. Giri, Studies of transport and magnetic properties of Ce-doped LaMnO3, Journal of Alloys and Compounds, 365 (2004) 94-101
http://dx.doi.org/10.1016/S0925-8388(03)00688-1
[6] D.J. Wang, J.R. Sun, S.Y. Zhang, G.J. Liu, and B.G. Shen, Hall effect in La0.7Ce0.3MnO3+ᵟ films with variable oxygen content, Phys. Rev. B 73, (2006) 144403
http://dx.doi.org/10.1103/PhysRevB.73.144403
[7] Q. Shu, J. Zhang, B. Yan, J. Liu, Phase formation mechanism and kinetics in solid state synthesis of undoped and calcium-doped lanthanum manganite. Materials Research Bulletin, 44 (2009) 649-653
http://dx.doi.org/10.1016/j.materresbull.2008.06.022
[8] Nikolina L. Petrova, Dimitar S. Todorovsky, Veselinka G. Vasileva, Synthesis and characterization of Mn-, La-Mn- and La-Ca-Mn-citrates as precursors for LaMnO3 and La1-xCaxMnO3, Central European Journal of Chemistry 3(2) (2005) 263–278
[9] Chul-min Heo, Min-sook Lee and Seong-Cho Yu, Magnetocaloric Effect of Perovskite Manganites of La0.8A0.2MnO3 (A = Ca, Sr, Ba), Journal of the Korean Physical Society, 57 (2010) 1893-1896
http://dx.doi.org/10.3938/jkps.57.1893
[10] C. Mitra, P. Raychaudhuri, J. John, S.K. Dhar, A.K. Nigam, and R Pinto, Growth of epitaxial and polycrystalline thin films of the electron doped system La1-xCexMnO3 through pulsed laser deposition, J. Appl. Phys., Vol. 89, (2001) 524-530
http://dx.doi.org/10.1063/1.1331648
[11] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic structures, J. Appl. Crystallogr. 2 (1969) 65-71
http://dx.doi.org/10.1107/S0021889869006558
[12] V. Petricek, M. Dusek, L. Palatinus, Jana 2006, The Crystallographic Computing System, Institute of Physics, Prague, Czech Republic, (2006)
[13] Maxim V. Kuznetsov, Ivan P. Parkin, Daren J. Caruanab and Yuri G. Morozova, Combustion synthesis of alkaline-earth substituted lanthanum manganites; LaMnO3, La0.6Ca0.4MnO3 and La0.6Sr0.4MnO3, J. Mater. Chem, 14 (2004) 1377–1382
http://dx.doi.org/10.1039/b313553p
[14] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, (1976) 751-767
http://dx.doi.org/10.1107/S0567739476001551
[15] R. Saravanan, GRAIN software, Private Communication, (2008)
[16] B.D. Culllity, S.R. Stock, Elements of X-ray Diffraction, third ed. Prentice Hall, New Jersy, 2001
[17] A.L.A. da Silva, L. da Conceição, A.M.Rocco, M.M.V.M.Souza, Synthesis of Sr-doped LaMnO3 and LaCrO3 powders by combustion method: structural characterization and thermodynamic evaluation, Cerâmica 58 (2012) 521-528
http://dx.doi.org/10.1590/S0366-69132012000400018
[18] D.M. Collins, Electron density images from imperfect data by iterative entropy maximization, Nature 49 (1982) 298
http://dx.doi.org/10.1038/298049a0
[19] A.D. Ruben, I. Fugio, Superfast program PRIMA for the Maximum Entropy Method, Advanced Materials Laboratory, National Institute for Material Science, Ibaraki, Japan (2004), 3050044
[20] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Applied Crystallogr. 41 (2008) 653-658
http://dx.doi.org/10.1107/S0021889808012016
[21] S. Faaland, K.D. Knudsen, M.A. Einarsrud, L. Rormark, R. Hoier, and T. Grande Structure, Stoichiometry, and Phase Purity of Calcium Substituted Lanthanum Manganite Powders, Journal of solid state chemistry 140, (1998) 320-330
http://dx.doi.org/10.1006/jssc.1998.7894
[22] J. Tauc, R. Grigorvici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Physica Status Solidi 15, 627–637 (1966).
http://dx.doi.org/10.1002/pssb.19660150224
[23] H. Kobori, A. Hoshino, A. Yamasaki, A. Sugiura, T. Taniguchi, T Horie, Y. Naitoh, and T. Shimizu, Magneto-resistance enhancement due to self-hole-doping in LaMnO3 produced by low temperature heat treatment, doi:10.1088/1742-6596/400/4/042035
[24] J.R. Gebhardt, S. Roy, and N. Alia, Colossal magnetoresistance in Ce doped manganese oxides, J. Appl. Phys. 85 (1999) 5390-5392
http://dx.doi.org/10.1063/1.369987
“>