Novel Ceramic Materials, Chapter 1


Chemical Bonding and Charge Density Imaging in Ba0.2Sr0.8TiO3 Ceramics by Iterative Entropy Maximization

J. Mangaiyarkkarasi, R. Saravanan

The ferroelectric ceramic material Ba0.2Sr0.8TiO3 has been synthesized by the conventional high temperature solid state reaction technique at 1400 ºC for 5h. The X-ray diffraction technique and scanning electron microscopy were adopted to analyze the crystal structure and surface morphology of the sample. Cell constant and unit cell volume are derived from the Rietveld refinement. Average grain size is calculated as 43nm. Electron density distributions and chemical bonding natures between the atoms in the lattice site of BaTiO3 were analyzed using the maximum entropy method (MEM). Charge density images and mid bond density values revealed the enhanced ionic character between Ba and O ions. Surface morphology is observed with scanning electron microscopy. Elemental compositions are further confirmed with energy dispersive X-ray spectroscopy.

Keywords: Barium Strontium Titanate, X-Ray Diffraction, Rietveld Refinement, Maximum Entropy Method, Electron Density

Published online 6/1/2016, 12 pages
DOI: 10.21741/9781945291036-1

Part of Novel Ceramic Materials


[1] Shi Ai-hua, Yan Wen-bin, Li You-ji, Huang Ke-long, Preparation and characterization of nanometer-sized barium titanate powder by complex-precursor method, J. Cent. South Univ. Technol.15 (2008) 334−338.
[2] M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, Influence of foreign ions on the crystal structure of BaTiO3, Journal of the European Ceramic Society 20 (2000) 1997-2007.
[3] Cai-Xia Li, BinYang, Shan-TaoZhang, RuiZhang, Wen-WuCao, Effects of sintering temperature and poling conditions on the electrical properties of Ba0.70Ca0.30TiO3 diphasic piezoelectric ceramics, Ceramics International 39 (2013) 2967–2973.
[4] T. Sahoo, G.K. Pradhan, M.K. Rath, B. Pandey, H.C. Verma,S. Nandy, K.K. Chattopadhyay, S. Anand, Characterization and photoluminescence studies on hydrothermally synthesized Mn-doped barium titanate nano powders, Materials Letters 61 (2007) 4821–4823.
[5] Zhi Cheng Li, Bill Bergman, Effect of ageing on the electrical resistivities of (Ba0.69Pb0.31)TiO3 PTCR ceramic thermistors, Ceramics International 31 (2005) 375–378.
[6] Fangyi Rao, Miyoung Kim, A. J. Freeman, Shaoping Tang and Mark Anthony, Structural and electronic properties of transition-metal/BaTiO3(001) interfaces, Physical Review B Volume 55, Number 20, 15 MAY 1997-II.
[7] Uma Shankar Modani, Gajanand Jagrawal, A survey on Application of Ferroelectric Materials for Fabrication of Microstrip Patch Antennas, International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-5, November 2012.
[8] Zhang Guangzu, Yi Jinqiao, Jiang Shenglin,Yu Yan, He Jungang, Liu Sisi, Zhu Dingyang, Zhang Ling, Role of internal stress on dielectric and dc bias field-induced pyroelectric properties of Ba0.68Sr0.32TiO3-(Ba0.68Sr0.32)2TiO4 for uncooled infrared detectors,
[9] R. K. Zheng, J. Wang, X. G. Tang, Y. Wang, H. L. W. Chan, C. L. Choy, X. G. Li, Effects of Ca doping on the Curie temperature, structural, dielectric, and elastic properties of Ba0.4Sr0.6−xCaxTiO3(0≤x≤0.3) perovskites, Journal of Applied Physics 98, 084108 (2005).
[10] S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Computational Materials Science 29 (2004) 165–178.
[11] Hiroyuki Nakayama and Hiroshi Katayama-Yoshida, Theoretical Prediction of Magnetic Properties of Ba(Ti1−xMx)O3 (M=Sc,V,Cr,Mn,Fe,Co,Ni,Cu), Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L 1355–L 1358.
[12] Hai Xiong Tang, Henry A.Sodono, Ultra high energy density nanocomposites capacitors with fast discharge using Ba0.2Sr 0.8TiO3 nanowires j. of Nanoletters 13 (2013)1373-1379.
[13] D.M. Collins. Electron density images from imperfect data by iterative entropy maximization. Nature., 298, (1982) 49-51.
[14] V. Petricek, M. Dusek, L. Palatinus, The Crystallographic Computing System JANA 2006. (Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000).
[15] R.W.G. Wyckoff, Crystal structures. 1 Inter-space publishers, London, 1963.
[16] Noor Jawad Ridha, W. Mahmood Mat Yunus, S.A. Halim, Z.A. Talib, Firas K. Mohamad Al-Asfoor and Walter C. Primus, Effect of Sr Substitution on Structure and Thermal Diffusivity of Ba1-xSrxTiO3 Ceramic, American J. of Engineering and Applied Sciences 2 (4): (2009) 661-664.
[17] R. Saravanan, Grain software (Personal communication) (2008).
[18] Teresa Hungria, Miguel Alguero,Ana B. Hungria, and Alicia Castro, Dense, Fine-Grained Ba1-xSrxTiO3 Ceramics Prepared by the Combination of Mechanosynthesized Nanopowders and Spark Plasma Sintering, Chem. Mater., 17, (2005) 6205-6212.
[19] A.D. Ruben, F. Izumi, Super-fast Program PRIMA for the Maximum-Entropy Method, Advanced Materials Laboratory (National institute for materials science, Tsukuba, Ibaraki, 2004).
[20] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis Journal of Applied Crystallography. 41, (2008), 653.
[21] H. Salehi, N. Shahtahmasebi, and S.M. Hosseini, Band structure of tetragonal BaTiO3, Eur. Phys. J. B 32, 177–180 (2003).
[22] M.F.C. Gurgel, J.W.M. Espinosa, A.B. Campos, I.L.V. Rosa, M.R. Joya, A.G. Souza, M.A. Zaghete, P.S. Pizani, E.R. Leite, J.A. Varela, E. Longo Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling Journal of Luminescence 126 (2007) 771–778.
[23] M.Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Ki, Characterization and Rietveld Refinement of A-site deficient Lanthanum doped Barium Titanate, Journal of Alloys and Compounds 579 (2013) 473–484.
[24] S. Suasmoro, S. Pratapa, D. Hartanto, D. Setyoko, U.M. Dani, The characterization of mixed titanate Ba1-xSrxTiO3 phase formation from oxalate coprecipitated precursor, Journal of the European Ceramic Society 20 (2000) 309-314.