Ni-Based Electrocatalysts for Oxygen Evolution Reaction

$28.50

Ni-Based Electrocatalysts for Oxygen Evolution Reaction

K. Karthick, Subrata Kundu

In order to replace highly active noble metals, research on earth abundant based catalysts has been triggered in recent years. In this aspect, from iron group (Fe, Co, Ni) elements, mainly Ni based catalysts with the highly probable d-electronic configuration for hydroxide ion interaction and oxygen molecule cleavage assures the enhanced efficiency for alkaline water oxidation. Ni has been studied elaborately as oxides, hydroxides, sulphides, and selenides that resulted in unprecedented enhancements in OER and hence the overall applied cell voltage can be decreased in alkaline water electrolysis.

Keywords
Nickel, Oxygen Evolution Reaction, Overpotential, Oxide, Sulphide, Selenide, Tafel Slopes, Linear Sweep Voltametry

Published online 10/5/2019, 28 pages

Citation: K. Karthick, Subrata Kundu, Ni-Based Electrocatalysts for Oxygen Evolution Reaction, Materials Research Foundations, Vol. 59, pp 215-242, 2019

DOI: https://doi.org/10.21741/9781644900451-9

Part of the book on Electrochemical Water Splitting

References
[1] T. Dietz, E.A. Rosa, Effects of population and affluence on CO2 emissions, Proc. Natl. Acad. Sci. 94 (2002) 175–179. https://doi.org/10.1073/pnas.94.1.175
[2] S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Policy 37 (2009) 181–189. https://doi.org/10.1016/j.enpol.2008.08.016
[3] N.L. Garland, D.C. Papageorgopoulos, J.M. Stanford, Hydrogen and fuel cell technology: Progress, challenges, and future directions, Energy Procedia 28 (2012) 2–11. https://doi.org/10.1016/j.egypro.2012.08.034
[4] H. Wendt, G. Imarisio, Nine years of research and development on advanced water electrolysis. A review of the research programme of the Commission of the European Communities, J. Appl. Electrochem. 18 (1988) 1–14. https://doi.org/10.1007/BF01016198
[5] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis, Chem. Cat. Chem. 2 (2010) 724–761. https://doi.org/10.1002/cctc.201000126
[6] J.B. Raoof, R. Ojani, A. Kiani, S. Rashid-Nadimi, Fabrication of highly porous Pt coated nanostructured Cu-foam modified copper electrode and its enhanced catalytic ability for hydrogen evolution reaction, Int. J. Hydrogen Energy 35 (2010) 452–458. https://doi.org/10.1016/j.ijhydene.2009.10.069
[7] M. Yagi, E. Tomita, S. Sakita, T. Kuwabara, K. Nagai, Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation, J. Phys. Chem. B Lett. 109 (2005) 21489. https://doi.org/10.1021/jp0550208
[8] K.A. Stoerzinger, O. Diaz-Morales, M. Kolb, R.R. Rao, R. Frydendal, L. Qiao, X.R. Wang, N.B. Halck, J. Rossmeisl, H.A. Hansen, T. Vegge, I.E.L. Stephens, M.T.M. Koper, Y. Shao-Horn, Orientation-dependent oxygen evolution on RuO2 without lattice exchange, ACS Energy Lett. 2 (2017) 876–881. https://doi.org/10.1021/acsenergylett.7b00135
[9] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc. 137 (2015) 4347–4357. https://doi.org/10.1021/ja510442p
[10] L.A. Stern, X. Hu, Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles, Faraday Discuss. 176 (2014) 363–379. https://doi.org/10.1039/C4FD00120F
[11] X. Wang, H. Luo, H. Yang, P.J. Sebastian, S.A. Gamboa, Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating, Int. J. Hydrogen Energy 29 (2004) 967–972. https://doi.org/10.1016/j.ijhydene.2003.05.001
[12] J. Landon, E. Demeter, N. Inoǧlu, C. Keturakis, I.E. Wachs, R. Vasić, A.I. Frenkel, J.R. Kitchin, Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes, ACS Catal. 2 (2012) 1793–1801. https://doi.org/10.1021/cs3002644
[13] K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Doblinger, A. Muller, A. Pokharel, S. Bocklein, C. Scheu, T. Bein, D. Fattakhova-Rohlfing, Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting, ACS Nano 9 (2015) 5180–5188. https://doi.org/10.1021/acsnano.5b00520
[14] S. Anantharaj, P.E. Karthik, K. Subrata, Petal-like hierarchical array of ultrathin Ni(OH)2 nanosheets decorated with Ni(OH)2 nanoburls: A highly efficient OER electrocatalyst, Catal. Sci. Technol. 7 (2017) 882–893. https://doi.org/10.1039/C6CY02282K
[15] L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation, J. Am. Chem. Soc. 136 (2014) 6744–6753. https://doi.org/10.1021/ja502379c
[16] P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu, Y. Wang, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system, ACS Appl. Mater. Interfaces 9 (2017) 2500–2508. https://doi.org/10.1021/acsami.6b13984
[17] J.S. Chen, J. Ren, M. Shalom, T. Fellinger, M. Antonietti, Stainless steel mesh-supported nis nanosheet array as highly efficient catalyst for oxygen evolution reaction, ACS Appl. Mater. Interfaces 8 (2016) 5509–5516. https://doi.org/10.1021/acsami.5b10099
[18] A.T. Swesi, J. Masud, W.P.R. Liyanage, S. Umapathi, E. Bohannan, J. Medvedeva, M. Nath, Textured NiSe2 film: bifunctional electrocatalyst for full water splitting at remarkably low overpotential with high energy efficiency, Sci. Rep. 7 (2017) 1–11. https://doi.org/10.1038/s41598-017-02285-z
[19] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting, Angew. Chemie – Int. Ed. 54 (2015) 9351–9355. https://doi.org/10.1002/anie.201503407
[20] T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials, ACS Catal. 2 (2012) 1765–1772. https://doi.org/10.1021/cs3003098
[21] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review, ACS Catal. 6 (2016) 8069–8097. https://doi.org/10.1021/acscatal.6b02479
[22] S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment, Energy Environ. Sci. 11 (2018) 744–771. https://doi.org/10.1039/C7EE03457A
[23] S. Anantharaj, S. Kundu, Enhanced water oxidation with improved stability by aggregated RuO2-NaPO3 Core-shell nanostructures in acidic medium, Curr. Nanosci. 13 (2017) 333–341. https://doi.org/10.2174/1573413713666170126155504
[24] S. Anantharaj, K. Karthick, S. Kundu, Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism, Mater. Today Energy 6 (2017) 1–26. https://doi.org/10.1016/j.mtener.2017.07.016
[25] J. Liu, D. Zhu, T. Ling, A. Vasileff, S.Z. Qiao, S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH, Nano Energy 40 (2017) 264–273. https://doi.org/10.1016/j.nanoen.2017.08.031
[26] L. Zhou, X. Huang, H. Chen, P. Jin, G. Li, X. Zou, A high surface area flower-like Ni–Fe layered double hydroxide for electrocatalytic water oxidation reaction, Dalt. Trans. 44 (2015) 11592–11600. https://doi.org/10.1039/C5DT01474C
[27] K. Karthick, S. Anantharaj, S. Kundu, ACS Sustain, Chem. Eng. 6 (2018) 6802-6810. https://doi.org/10.1021/acssuschemeng.8b00633
[28] S. Anantharaj, J. Kennedy, S. Kundu, Microwave-initiated facile formation of Ni3Se4 nanoassemblies for enhanced and stable water splitting in neutral and alkaline media, ACS Appl. Mater. Interfaces 9 (2017) 8714–8728. https://doi.org/10.1021/acsami.6b15980
[29] W. Sun, Y. Chen, K. Rui, J. Zhu, S.X. Dou, Recent progressonnickel-based oxide/(Oxy)hydroxide electrocatalysts for the oxygen evolution reaction, Chem. – A Eur. J. 25 (2018) 703–713. https://doi.org/10.1002/chem.201802068
[30] R. Schlogl, P. Strasser, T. Reier, H.N. Nong, D. Teschner, Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts, Adv. Energy Mater. 7 (2016) 160127. https://doi.org/10.1002/aenm.201601275
[31] S. Anantharaj, K. Karthick, M. Venkatesh, T.V.S.V. Simha, A.S. Salunke, L. Ma, H. Liang, S. Kundu, Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces, Nano Energy 39 (2017) 30–43. https://doi.org/10.1016/j.nanoen.2017.06.027
[32] S. Anantharaj, P.E. Karthik, B. Subramanian, S. Kundu, Pt nanoparticle anchored molecular self-assemblies of DNA: An extremely stable and efficient HER electrocatalyst with ultralow Pt content, ACS Catal. 6 (2016) 4660–4672. https://doi.org/10.1021/acscatal.6b00965
[33] K. Karthick, S. Anantharaj, S.R. Ede, S. Kundu, Nanosheets of nickel iron hydroxy carbonate hydrate with pronounced oer activity under alkaline and near-neutral conditions, Inorg. Chem. 58 (2019) 1895–1904. https://doi.org/10.1021/acs.inorgchem.8b02680
[34] U.Y. Qazi, C.Z. Yuan, N. Ullah, Y.F. Jiang, M. Imran, A. Zeb, S.J. Zhao, R. Javaid, A.W. Xu, One-step growth of iron–nickel bimetallic nanoparticles on feni alloy foils: highly efficient advanced electrodes for the oxygen evolution reaction, ACS Appl. Mater. Interfaces 9 (2017) 28627–28634. https://doi.org/10.1021/acsami.7b08922
[35] J. Chi, H. Yu, G. Li, L. Fu, J. Jia, X. Gao, B. Yi, Z. Shao,Nickel/cobalt oxide as a highly efficient OER electrocatalyst in an alkaline polymer electrolyte water electrolyzer, RSC Adv. 6 (2016) 90397–90400. https://doi.org/10.1039/C6RA19615B
[36] M. Gong, H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res. 8 (2014) 23–39. https://doi.org/10.1007/s12274-014-0591-z
[37] A. Wang, Z. Zhao, D. Hu, J. Niu, M. Zhang, K. Yan, G. Lu, Tuning the oxygen evolution reaction on a nickel–iron alloy via active straining, Nanoscale 11 (2019) 426–430. https://doi.org/10.1039/C8NR08879A
[38] K. Li, T. Tian, Y. Ding, H. Gao, J. Wu, L. Zheng, X. Zhou, Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis, ACS Energy Lett. 3 (2018) 2150–2158. https://doi.org/10.1021/acsenergylett.8b01206
[39] C. Zhu, D. Wen, S. Leubner, M. Oschatz, W. Liu, M. Holzschuh, F. Simon, S. Kaskel, A. Eychmüller, Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction, Chem. Commun. 51 (2015) 7851–7854. https://doi.org/10.1039/C5CC01558H
[40] H.Z. Cao, J. Xia, L.K. Wu, G.Y. Hou, Y.P. Tang, G.Q. Zheng, W.Y. Wu, A nanostructured nickel–cobalt alloy with an oxide layer for an efficient oxygen evolution reaction, J. Mater. Chem. A 5 (2017) 10669–10677. https://doi.org/10.1039/C7TA02754K
[41] S. Anantharaj, M. Venkatesh, A.S. Salunke, T.V.S.V. Simha, V. Prabu, S. Kundu, High-performance oxygen evolution anode from stainless steel via controlled surface oxidation and Cr removal, ACS Sustain. Chem. Eng. 5 (2017) 10072–10083. https://doi.org/10.1021/acssuschemeng.7b02090
[42] S. Anantharaj, S. Chatterjee, K.C. Swaathini, T.S. Amarnath, E. Subhashini, D.K. Pattanayak, S. Kundu, Stainless steel scrubber: A cost efficient catalytic electrode for full water splitting in alkaline medium. ACS Sustain. Chem. Eng. 6 (2018) 2498–2509. https://doi.org/10.1021/acssuschemeng.7b03964
[43] S.R. Ede, S. Anantharaj, B. Subramanian, A. Rathishkumar, S. Kundu, Microwave-assisted template-free synthesis of Ni3(BO3)2(NOB) hierarchical nanoflowers for electrocatalytic oxygen evolution, Energy and Fuels 32 (2018) 6224–6233. https://doi.org/10.1021/acs.energyfuels.8b00804
[44] X. Shang, X. Li, W.H. Hu, B. Dong, Y.R. Liu, G.Q. Han, Y.M. Chai, Y.Q. Liu, C.G. Liu, In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction, Appl. Surf. Sci. 378 (2016) 15–21. https://doi.org/10.1016/j.apsusc.2016.03.197
[45] J. Jian, L. Yuan, H. Qi, X. Sun, L. Zhang, H. Li, H. Yuan, S. Feng, Sn–Ni3S2 Ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential, ACS Appl. Mater. Interfaces 10 (2018) 40568-40576. https://doi.org/10.1021/acsami.8b14603
[46] L.Y.T. Chou, K. Zagorovsky, W.C.W. Chan, DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination, Nat. Nanotechnol. 9 (2014) 148–155. https://doi.org/10.1038/nnano.2013.309
[47] A. Kuzuya, Y. Ohya, DNA nanostructures as scaffolds for metal nanoparticles, Polym. J. 44 (2012) 452–460. https://doi.org/10.1038/pj.2012.38
[48] A.T. Swesi, J. Masud, M. Nath,Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction, Energy Environ. Sci. 9 (2016) 1771–1782. https://doi.org/10.1039/C5EE02463C