Transition-Metal Chalcogenides for Oxygen-Evolution Reaction

$28.50

Transition-Metal Chalcogenides for Oxygen-Evolution Reaction

Kartick Chandra Majhi, Paramita Karfa, Rashmi Madhuri

In order to search a green, sustainable, and highly effective energy creation to fulfill the energy demand of our modern society, different technologies have been developed for energy generation/conversion. But, after surveying different prospects, it was found that electrolysis of water is one of the best among them and can be stabilized as a very exciting/useful technology for energy generation. Oxygen evolution reaction (OER) is the half-cell reaction of water electrolysis and therefore has been greatly studied in the last few decades. Since four electrons are required for successful OER, and the result reaction kinetics is very slow, to accelerate the reaction rate, highly efficient catalysts are required. In recent times, based on the low cost, more feasible option, tunable properties, transition metal chalcogenides, i.e. sulfides, selenides, and tellurides based materials have come up to rescue the difficult kinetics of OER. They have been found as best candidates for OER in terms of activity, durability, earth abundance, and low cost, owing to their unique physical, optical, and chemical properties. In this chapter, we have briefly discussed the kinetics parameter, OER mechanism, and role of transition metal chalcogenides towards OER. As a concluding remark, their prospects have also been discussed in this chapter.

Keywords
Oxygen Evolution Reaction, Transition Metal Chalcogenides, Sulfides, Selenides, Tellurides

Published online 10/5/2019, 28 pages

Citation: Kartick Chandra Majhi, Paramita Karfa, Rashmi Madhuri, Transition-Metal Chalcogenides for Oxygen-Evolution Reaction, Materials Research Foundations, Vol. 59, pp 141-168, 2019

DOI: https://doi.org/10.21741/9781644900451-6

Part of the book on Electrochemical Water Splitting

References
[1] X. Luo, S. Qi, P. Yecan, H. Xiaoqing, Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction, ACS Catal. 2 (2018) 1013-1018. https://doi.org/10.1021/acscatal.8b04521
[2] R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. Stephens, I. Chorkendorff, Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses, Chem. Electro. Chem. 12 (2014) 2075-81. https://doi.org/10.1002/celc.201402262
[3] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phy. Chem. Lett, 3 (2012) 399-404. https://doi.org/10.1021/jz2016507
[4] T. Reier, O. Mehtap, S. Peter, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials, ACS Catal. 8 (2012) 1765-1772. https://doi.org/10.1021/cs3003098
[5] M. Vukovic, Oxygen evolution reaction on thermally treated iridium oxide films, J. Appl. Electrochem. 4 (1987) 737-745. https://doi.org/10.1007/BF01007809
[6] E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells, ACS Catal. 5 (2014) 1426-1440. https://doi.org/10.1021/cs4011875
[7] R. Kotz, H. Neff, S. Stucki, Anodic iridium oxide films XPS‐studies of oxidation state changes, J. Electrochem. Soc. 1 (1984) 72-77. https://doi.org/10.1149/1.2115548
[8] N.T. Suen, F.H. Sung, Q. Quan, Z. Nan, X. J. Yi, C. M. Hao, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 2 (2017) 337-365. https://doi.org/10.1039/C6CS00328A
[9] S. Farid, R. Suzhen, H. Ce, MOF-derived metal/carbon materials as oxygen evolution reaction catalysts, Inor. Chem. Comm. 94 (2018) 57-74. https://doi.org/10.1016/j.inoche.2018.06.008
[10] F. Lu, Z. Min Z. Yuxue, Z. Xianghua, First‐row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: Basic principles and recent advances, Small 45 (2017) 1701931. https://doi.org/10.1002/smll.201701931
[11] J.A. Bard, F.R. Larry, L. Johna, Z.G. Cynthia, Electrochemical methods: Fundamentals and applications. Vol. 2. New York: wiley, 1980.
[12] F. Yu, L. Yu, I.K. Mishra, Y. Yu, Z.F. Ren, H.Q. Zhou, Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis, Mater. Today Phy. 7 (2018) 121-138. https://doi.org/10.1016/j.mtphys.2018.11.007
[13] K. Xiao, Z. Lei, S. Mingfei, W. Min, Fabrication of (Ni, Co)0.85 Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting, J. Mater. Chem. A 17 (2018) 7585-7591. https://doi.org/10.1039/C8TA01067F
[14] W. Zhang, L. Daohao, Z. Longzhou, S. Xilin, Y. Dongjiang, NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions, J. Energy. Chem. (2019). https://doi.org/10.1016/j.jechem.2019.01.017
[15] R. Frydendal, P.A. Elisa, K.P. Brian, W. Bjorn, M. Paolo, S. Ifan EL, C. Ib, Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses, Chem. Electro. Chem. 12 (2014) 2075-2081. https://doi.org/10.1002/celc.201402262
[16] C.L.C. McCrory, J. Suho, F.M. Ivonne, C.M. Shawn, P.C. Jonas, J.F. Thomas, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc. 13 (2015) 4347-4357. https://doi.org/10.1021/ja510442p
[17] M. Nic, H. Ladislav, J. Jiri, K. Bedrich, Z. Jiri, IUPAC compendium of chemical terminology-the gold book, IUPAC, 2005.
[18] V.A. Kolobov, T. Junji, Two-dimensional transition-metal dichalcogenides, Vol. 239. Springer, 2016. https://doi.org/10.1007/978-3-319-31450-1
[19] T.A. Swesi, M. Jahangir, N. Manashi, Transition metal chalcogenide based elelctrocatalysts for facile water oxidation/reduction, In Meeting Abstracts, The Electrochem. Soc. 29 (2016) 1438-1438.
[20] H. Yuan, K. Long, L. Tao, Z. Qiang, A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion, Chinese Chem. Lett. 12 (2017) 2180-2194. https://doi.org/10.1016/j.cclet.2017.11.038
[21] S. Anantharaj, E.R. Sivasankara, S. Kuppan, K. Kannimuthu, M. Soumyaranjan, K. Subrata, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review, ACS Catal. 12 (2016) 8069-8097. https://doi.org/10.1021/acscatal.6b02479
[22] P. Luo, Z. Huijuan, L. Li, Z. Yan,D. Ju, X. Chaohe, H. Ning, W. Yu, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system, ACS Appl. Mater. Interfaces 3 (2017) 2500-2508. https://doi.org/10.1021/acsami.6b13984
[23] Y. Zhang, C. Shujun, W. Xiaobing, H. Huijuan, B. Zhengyu, Y. Lin, Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions, Electrochim. Acta 246 (2017) 380-390. https://doi.org/10.1016/j.electacta.2017.06.058
[24] X. Feng,J. Qingze,L. Tong, L. Qun, Y. Mengmeng, Z. Yun, L. Hansheng, F. Caihong,Z. Wei, Facile synthesis of Co9S8 hollow spheres as a high-performance electrocatalyst for the oxygen evolution reaction, ACS Sustain. Chem. Engineer. 2 (2017): 1863-1871. https://doi.org/10.1021/acssuschemeng.7b03236
[25] Z. Zeng, X. Rui, Z. Huaping, Z. Huanming, X. Shipu, L. Yong, exploration of nanowire-and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction, Mater. Today Nano (2018). https://doi.org/10.1016/j.mtnano.2018.11.005
[26] M. Chauhan, P.R. Kasala, G.S. Chinnakonda, D. Sasanka, Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction, ACS Catalysis 9 (2017) 5871-5879. https://doi.org/10.1021/acscatal.7b01831
[27] Z.F. Huang, S. Jiajia, L. Ke, T. Muhammad, T.W. Yu, P. Lun, W. Li, Z. Xiangwen, J.Z. Ji, Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution, J. Am. Chem. Soc. 4 (2016): 1359-1365. https://doi.org/10.1021/jacs.5b11986
[28] W.K. Gao, F.Q. Jun, W. Kai, L.Y. Kai, Z.L. Zi, H.L. Jia, M.C. Yong, G.L. Chen, D. Bin, Facile synthesis of Fe-doped Co9S8 nano-microspheres grown on nickel foam for efficient oxygen evolution reaction, Appl. Surface Sci. 454 (2018) 46-53. https://doi.org/10.1016/j.apsusc.2018.05.099
[29] H.S. Jadhav, R. Animesh, M.T. Gaurav, J.C. Wook, G.S. Jeong, Hierarchical free-standing networks of MnCo2S4 as efficient Electrocatalyst for oxygen evolution reaction, J. Indus. Engineer. Chem. 71 (2019) 452-459. https://doi.org/10.1016/j.jiec.2018.12.002
[30] J. Zhang, B. Xiaowan, W. Tongtong, X. Wen, X. Pinxian, W. Jinlan, G. Daqiang, W. John, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting, Nano-micro lett. 1 (2019): 2. https://doi.org/10.1007/s40820-018-0232-2
[31] Z. Cai, X. Bu, P. Wang, Y. Gao, X. Wang, Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction, J. Mater. Chem. A 1 (2013) 1-22
[32] H. Li, S. Youdong, S. Yantao, G. Yuanhong, W. Xinwei, Vapor-phase atomic layer deposition of nickel sulfide and its application for efficient oxygen-evolution electrocatalysis, Chem. Mater. 4 (2016) 1155-1164. https://doi.org/10.1021/acs.chemmater.5b04645
[33] T. Liu, S. Xuping, M.A. Abdullah, H. Yuquan, One-step electrodeposition of Ni–Co–S nanosheets film as a bifunctional electrocatalyst for efficient water splitting, Int.J. Hydrogen Energy 18 (2016) 7264-7269. https://doi.org/10.1016/j.ijhydene.2016.03.111
[34] O. Mabayoje, S. Ahmed, R.W. Bryan, C.B. Mullins, The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as “pre-catalysts”, ACS Energy Lett. 1 (2016) 195-201. https://doi.org/10.1021/acsenergylett.6b00084
[35] X. Zhao, S. Xiao Q. Yun, D. Bin, Q.H. Guan, L. Xiao, R.L. Yan, C. Qi, C.M. Yong, L. G. Chen, Electrodeposition-solvothermal access to ternary mixed metal Ni-Co-Fe sulfides for highly efficient electrocatalytic water oxidation in alkaline media, Electrochim. Acta 230 (2017) 151-159. https://doi.org/10.1016/j.electacta.2017.01.178
[36] W. Fang, L. Danni, L. Qun, S. Xuping, M.A. Abdullah, Nickel promoted cobalt disulfide nanowire array supported on carbon cloth: an efficient and stable bifunctional electrocatalyst for full water splitting, Electrochem. Commun. 63 (2016) 60-64. https://doi.org/10.1016/j.elecom.2015.10.010
[37] D. Liu, L. Qun, L. Yonglan, S. Xuping, M.A. Abdullah, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity, Nanoscale 37 (2015) 15122-15126. https://doi.org/10.1039/C5NR04064G
[38] C. Zequine, B. Sanket, W. Fangzhou, L. Xianglin, S. Khamis, P.K. Kahol, K.G. Ram, Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage, J. Alloys Compounds 784 (2019) 1-7. https://doi.org/10.1016/j.jallcom.2019.01.012
[39] L. Wang, L. Yibin, S. Qiangqiang, Q. Qi, S. Yuqian, M. Yi, W. Zenglin, Z. Chuan, Ultralow Fe(III) ion doping triggered generation of Ni3S2 ultrathin nanosheet for enhanced oxygen evolution reaction, Chem. Cat. Chem. 11 (2019) 2011-2016. https://doi.org/10.1002/cctc.201801959
[40] Y. Guo, D. Guo, Y. Feng, K. Wang, S. Zhongqi. Synthesis of lawn-like NiS2 nanowires on carbon fiber paper as bifunctional electrode for water splitting, Int. J. Hydrogen Energy 27 (2017) 17038-17048. https://doi.org/10.1016/j.ijhydene.2017.05.195
[41] C. Zequine, B. Sanket, S. Khamis, K. K. Pawan,K. Nikolaos, M. Christian, J. H. Steven, Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation, Surf. Coatings Technol. 354 (2018) 306-312. https://doi.org/10.1016/j.surfcoat.2018.09.045
[42] J.T. Ren, Y.Y. Zhong, Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium, ACS Sustain. Chem. Engineer. 8 (2017) 7203-7210. https://doi.org/10.1021/acssuschemeng.7b01419
[43] Z. Fang, P. Lele, L. Haifeng, Z. Yue, Y. Chunshuang, W. Shengqi, K. Pranav, W. Xiaojun, Y. Guihua, Metallic transition metal selenide holey nanosheets for efficient oxygen evolution electrocatalysis, ACS nano 9 (2017) 9550-9557. https://doi.org/10.1021/acsnano.7b05481
[44] A. T. Swesi, M. Jahangir,N. Manashi, Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction, Energy Environ. Sci. 5 (2016) 1771-1782. https://doi.org/10.1039/C5EE02463C
[45] J. Suntivich, J.M. Kevin, A. G. Hubert, B. G. John B. S. H. Yang, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science 6061 (2011) 1383-1385. https://doi.org/10.1126/science.1212858
[46] C. Tang, C. Ningyan, P. Zonghua, X. Wei, S. Xuping, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting, Angewandte Chemie International Edition 32 (2015) 9351-9355. https://doi.org/10.1002/anie.201503407
[47] X. Wu, H. Denghong, Z. Hongxiu, L. Hao, L. Zhongjian, Y. Bin, L. Zhan, L. Lecheng, Z. Xingwang Zhang, Ni0.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting, Int. J. Hydrogen Energy 25 (2016) 10688-10694. https://doi.org/10.1016/j.ijhydene.2016.05.010
[48] Y. Du, C. Gongzhen, L. Wei, NiSe2/FeSe2 nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction, Catal. Sci. Technol. 20 (2017) 4604-4608. https://doi.org/10.1039/C7CY01496A
[49] V. Ganesan, K. Jinkwon, Prussian blue analogue metal organic framework-derived CoSe2 nanoboxes for highly efficient oxygen evolution reaction, Mater. Lett. 223 (2018) 49-52. https://doi.org/10.1016/j.matlet.2018.03.125
[50] M. Liao, Z. Guangfeng, L. Tingting, J. Zhaoyu, W. Yujue, K. Xingming, X. Dan. Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction, Electrochim.Acta194 (2016) 59-66. https://doi.org/10.1016/j.electacta.2016.02.046
[51] J. Masud, A. T. Swesi, P. R. W. Liyanage, N. Manashi, Cobalt selenide nanostructures: an efficient bifunctional catalyst with high current density at low coverage, ACS Appl. Mater. Interfaces 27 (2016) 17292-17302. https://doi.org/10.1021/acsami.6b04862
[52] I.H. Kwak, S.I. Hyung, M.J. Dong, W.K. Young, P. Kidong, R.L.Young, H.C. Eun, P. Jeunghee, CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting, ACS Appl. Mater. Interfaces 8 (2016) 5327-5334. https://doi.org/10.1021/acsami.5b12093
[53] J. Zhang, J. Bei, Z. Jingru, L. Ruguang, Z. Nana, L. Ruixin, L. Jiakai, Z. Daojun, Z. Renchun, Facile synthesis of NiSe2 particles with highly efficient electrocatalytic oxygen evolution reaction, Mater. Lett. 235 (2019) 53-56. https://doi.org/10.1016/j.matlet.2018.09.163
[54] M. Wang, D. Zhiya, P. Mirko, V.S. Dipak, D.T. Luca, M. Liberato Manna, Ni–Co–S–Se Alloy nanocrystals: Influence of the composition on their in situ transformation and electrocatalytic activity for the oxygen evolution reaction, ACS Appl. Nano Mater.10 (2018) 5753-5762. https://doi.org/10.1021/acsanm.8b01418
[55] Y. Hou, R.L. Martin, Z. Jian, L. Shaohua, Z. Xiaodong, F. Xinliang, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting, Energy Environ. Sci. 2 (2016) 478-483. https://doi.org/10.1039/C5EE03440J
[56] Z. Pu, L. Yonglan, A.M. Abdullah, S. Xuping, Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film, ACS Appl. Mater. Interfaces 7 (2016) 4718-4723. https://doi.org/10.1021/acsami.5b12143
[57] J. Xin, T. Hua, L. Zhihe, Z. Lili, X. Junfeng, S. Yuanhua, Z. Weijia, W. Aizhu, L. Hong, J. W. Jian, Facile synthesis of hierarchical porous NixCo1− xSeO3 networks with controllable composition as a new and efficient water oxidation catalyst, Nanoscale 7 (2019) 3268-3274. https://doi.org/10.1039/C8NR09218D
[58] J. Zhang, W. Ying, Z. Chi, G. Hui, L. Lanfen, H. Lulu, Z. Zhonghua, Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting, ACS Sustain. Chem. Engineer. 2 (2017) 2231-2239. https://doi.org/10.1021/acssuschemeng.7b03657
[59] J. Jian, Y. Long, Q. Hui, S. Xuejiao, Z. Le, L. He, Y. Hongming, F. Shouhua, Sn–Ni3S2 Ultrathin Nanosheets as Efficient Bifunctional Water-Splitting Catalysts with a Large Current Density and Low Overpotential, ACS Appl. Mater. Interfaces 47 (2018) 40568-40576. https://doi.org/10.1021/acsami.8b14603
[60] F. Zhang, P. Yu, G. Yuancai, C. Hang, C. Steven, D. Pei, C. Jun, M.A. Pulickel, Y. Mingxin, S. Jianfeng, Controlled synthesis of eutectic NiSe/Ni3Se2 self‐supported on Ni foam: An excellent bifunctional electrocatalyst for overall water splitting, Adv. Mater. Interfaces 8 (2018) 1701507. https://doi.org/10.1002/admi.201701507
[61] H. Ren, H. H. Zheng, Y. Zhiyu, T. Shujun, K. Feiyu,L. Ruitao, Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting, J. energy chem. 6 (2017) 1217-1222. https://doi.org/10.1016/j.jechem.2017.10.004
[62] J. Du, Z.Z. Jing, L. Chen, X. Cailing, Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction, Nanoscale 11 (2018) 5163-5170. https://doi.org/10.1039/C8NR00426A
[63] A.T. Swesi, M. Jahangir, L.P.R. Wipula, U. Siddesh, B. Eric, M. Julia, N. Manashi, Textured NiSe2 film: Bifunctional electrocatalyst for full water splitting at remarkably low overpotential with high energy efficiency, Sci. Reports 1 (2017) 2401. https://doi.org/10.1038/s41598-017-02285-z
[64] J. Masud, I. Polydoros‐Chrysovalantis, L. Nikolaos, K. Panayotis, N. Manashi, A Molecular Ni‐complex containing tetrahedral nickel selenide core as highly efficient electrocatalyst for water oxidation, Chem. Sus. Chem. 22 (2016) 3128-3132. https://doi.org/10.1002/cssc.201601054
[65] F.A. Rasmussen, S.T. Kristian Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides, J. Phy. Chem. C 23 (2015) 13169-13183. https://doi.org/10.1021/acs.jpcc.5b02950
[66] Y. Xu, A.A.S. Martin, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, American Mineralogist 3-4 (2000) 543-556. https://doi.org/10.2138/am-2000-0416
[67] D.U. Silva, J. Masud, N. Zhang, Y. Hong, L.P.R. Wipula, A.Z. Mohsen, N. Manashi, Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium, J. Mater. Chem. A 17 (2018) 7608-7622. https://doi.org/10.1039/C8TA01760C
[68] Z. Wang, Z. Lixue In situ growth of NiTe nanosheet film on nickel foam as electrocatalyst for oxygen evolution reaction, Electrochem. Commun. 88 (2018) 29-33. https://doi.org/10.1016/j.elecom.2018.01.014
[69] K.S. Bhat, C.B. Harish, H.S. Nagaraja, Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction, Int. J. hydrogen energy 39 (2017) 24645-24655. https://doi.org/10.1016/j.ijhydene.2017.08.098
[70] I.G. McKendry, C.T. Akila, S. Jianwei, P. Haowei, P.P. John, R.S. Daniel, J.Z. Michael, Water oxidation catalyzed by cobalt oxide supported on the mattagamite phase of CoTe2, ACS Catal. 11 (2016) 7393-7397. https://doi.org/10.1021/acscatal.6b01878
[71] S. Patil, A. Supriya, K. Eun-Kyung, K.S. Nabeen, C. Jinho, K.J. Joong, H.H. Sung, Formation of semimetallic cobalt telluride nanotube film via anion exchange tellurization strategy in aqueous solution for electrocatalytic applications, ACS Appl. Mater. Interfaces 46 (2015) 25914-25922. https://doi.org/10.1021/acsami.5b08501
[72] Q. Gao, C.Q.H. Qiang, M.J.Yi, M.R. Gao, J.W. Liu, A. Duo, C. Chun‐Hua, R.Z. Ya, L. Wei‐Xue,H. Y. Shu‐Hong, Phase‐selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts, Angewandte Chemie 27 (2017) 7877-7881. https://doi.org/10.1002/ange.201701998
[73] Q. Wang, Z. Junyong, W. Huanhuan, Y. Sichao, W. Xiaohong, Anchoring NiTe domains with unusual composition on Pb0.95Ni0.05Te nanorod as superior lithium-ion battery anodes and oxygen evolution catalysts, Mater. Today Energy 11 (2019) 199-210. https://doi.org/10.1016/j.mtener.2018.12.001