Inkjet Printing for Biosensors and Bioelectronics

$28.50

Inkjet Printing for Biosensors and Bioelectronics

Nouran Adly, Philipp Rinklin, Bernhard Wolfrum

This chapter examines the role of inkjet printing for the fabrication of biosensors and bioelectronic devices. Inkjet printing is a promising technique that can be employed to directly fabricate sensors and electronics on a variety of substrates including flexible plastics and soft silicones. In contrast to state-of-the-art mask-based microfabrication it is capable of testing new materials and designs in a rapid prototyping approach. As such, it has the potential to play a powerful role in the development of customized devices. Here, we present an overview of recent research describing the application of inkjet technologies to print functional biosensors and bioelectronic devices. We discuss advantages and limitations of this approach and address possible routes to overcome current challenges for future developments in this field.

Keywords
Flexible Bioelectronics, Biosensors, Microelectrode Arrays, Inkjet Printing

Published online 9/20/2019, 20 pages

Citation: Nouran Adly, Philipp Rinklin, Bernhard Wolfrum, Inkjet Printing for Biosensors and Bioelectronics, Materials Research Foundations, Vol. 56, pp 213-232, 2019

DOI: https://doi.org/10.21741/9781644900376-7

Part of the book on Organic Bioelectronics for Life Science and Healthcare

References
[1] B. Derby, Annu. Rev. Mater. Res. 2010, 40, 395. https://doi.org/10.1146/annurev-matsci-070909-104502
[2] S. Magdassi, The Chemistry of Inkjet Inks, World Scientific Singapore, 2010. https://doi.org/10.1142/6869
[3] K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. M. Ajayan, Small 2006, 2, 1021. https://doi.org/10.1002/smll.200600061
[4] P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana, T. Hasan, A. J. Flewitt, J. Robertson, G. W. Hsieh, F. M. Li, A. Nathan, A. C. Ferrari, W. I. Milne, J. Appl. Phys. 2007, 102, 043710. https://doi.org/10.1063/1.2770835
[5] E. B. Secor, P. L. Prabhumirashi, K. Puntambekar, M. L. Geier, M. C. Hersam, J. Phys. Chem. Lett. 2013, 4, 1347. https://doi.org/10.1021/jz400644c
[6] L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Nano Res. 2011, 4, 675. https://doi.org/10.1007/s12274-011-0123-z
[7] A. Kamyshny, J. Steinke, S. Magdassi, Open Appl. Phys. J. 2011, 4.
[8] A. L. Dearden, P. J. Smith, D.-Y. Shin, N. Reis, B. Derby, P. O’Brien, Macromol. Rapid Commun. 2005, 26, 315. https://doi.org/10.1002/marc.200400445
[9] H. M. Haverinen, R. A. Myllylä, G. E. Jabbour, Appl. Phys. Lett. 2009, 94, 073108. https://doi.org/10.1063/1.3085771
[10] H. M. Haverinen, R. A. Myllylä, G. E. Jabbour, J. Disp. Technol. 2010, 6, 87. https://doi.org/10.1109/JDT.2009.2039019
[11] S. D. Hoath, Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, John Wiley & Sons, 2016. https://doi.org/10.1002/9783527684724
[12] G. Mattana, D. Briand, Mater. Today 2016, 19, 88. https://doi.org/10.1016/j.mattod.2015.08.001
[13] A. Moya, G. Gabriel, R. Villa, F. Javier del Campo, Curr. Opin. Electrochem. n.d., https://doi.org/10.1016/j.coelec.2017.05.003.
[14] A. Salim, S. Lim, Sensors 2017, 17. https://doi.org/10.3390/s17112593
[15] A. J. Baeumner, Anal. Bioanal. Chem. 2003, 377, 434. https://doi.org/10.1007/s00216-003-2158-9
[16] S. Bobade, D. R. Kalorey, S. Warke, Biosci. Biotechnol. Res. Commun. 2016, 9, 132. https://doi.org/10.21786/bbrc/19.1/20
[17] A. N. Sekretaryova, M. Eriksson, A. P. F. Turner, Biotechnol. Adv. 2016, 34, 177. https://doi.org/10.1016/j.biotechadv.2015.12.005
[18] S. Mittal, H. Kaur, N. Gautam, A. K. Mantha, Biosens. Bioelectron. 2017, 88, 217. https://doi.org/10.1016/j.bios.2016.08.028
[19] A. P. F. Turner, Chem. Soc. Rev. 2013, 42, 3184. https://doi.org/10.1039/c3cs35528d
[20] B. Bohunicky, S. A. Mousa, Nanotechnol. Sci. Appl. 2010, 4, 1.
[21] S. J. Updike, G. P. Hicks, Nature 1967, 214, 986. https://doi.org/10.1038/214986a0
[22] G. Sánchez-Pomales, R. A. Zangmeister, “Recent Advances in Electrochemical Glycobiosensing,” 2011. https://doi.org/10.4061/2011/825790
[23] A. E. G. Cass, Graham. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. John. Higgins, E. V. Plotkin, L. D. L. Scott, A. P. F. Turner, Anal. Chem. 1984, 56, 667. https://doi.org/10.1021/ac00268a018
[24] S. Borgmann, A. Schulte, S. Neugebauer, W. Schuhmann, Adv. Electrochem. Sci. Eng. WILEY-VCH Verl. GmbH Co KGaA Weinh. Ger. 2011.
[25] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, RSC Adv. 2013, 3, 4473. https://doi.org/10.1039/c2ra22351a
[26] L. Setti, A. Fraleoni-Morgera, B. Ballarin, A. Filippini, D. Frascaro, C. Piana, Biosens. Bioelectron. 2005, 20, 2019. https://doi.org/10.1016/j.bios.2004.09.022
[27] Y. H. Yun, B. K. Lee, J. S. Choi, S. Kim, B. Yoo, Y. S. Kim, K. Park, Y. W. Cho, Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 2011, 27, 375. https://doi.org/10.2116/analsci.27.375
[28] G. C. Jensen, C. E. Krause, G. A. Sotzing, J. F. Rusling, Phys. Chem. Chem. Phys. 2011, 13, 4888. https://doi.org/10.1039/c0cp01755h
[29] P. Teengam, W. Siangproh, A. Tuantranont, C. S. Henry, T. Vilaivan, O. Chailapakul, Anal. Chim. Acta 2017, 952, 32. https://doi.org/10.1016/j.aca.2016.11.071
[30] N. Adly, L. Feng, K. J. Krause, D. Mayer, A. Yakushenko, A. Offenhäusser, B. Wolfrum, Adv. Biosyst. 2017, n/a.
[31] A. Miodek, N. Mejri, M. Gomgnimbou, C. Sola, H. Korri-Youssoufi, Anal. Chem. 2015, 87, 9257. https://doi.org/10.1021/acs.analchem.5b01761
[32] J. Zhuang, L. Fu, M. Xu, H. Yang, G. Chen, D. Tang, Anal. Chim. Acta 2013, 783, 17. https://doi.org/10.1016/j.aca.2013.04.049
[33] E. Xiong, X. Zhang, Y. Liu, J. Zhou, P. Yu, X. Li, J. Chen, Anal. Chem. 2015, 87, 7291. https://doi.org/10.1021/acs.analchem.5b01402
[34] L. Hu, T. Tan, G. Chen, K. Zhang, J.-J. Zhu, Electrochem. Commun. 2013, 35, 104. https://doi.org/10.1016/j.elecom.2013.08.004
[35] J. S. del Río, N. Yehia Adly, J. L. Acero-Sánchez, O. Y. F. Henry, C. K. O’Sullivan, Biosens. Bioelectron. 2014, 54, 674. https://doi.org/10.1016/j.bios.2013.11.035
[36] B. Wolfrum, E. Kätelhön, A. Yakushenko, K. J. Krause, N. Adly, M. Hüske, P. Rinklin, Acc. Chem. Res. 2016, 49, 2031. https://doi.org/10.1021/acs.accounts.6b00333
[37] J. Diao, A. Ding, Y. Liu, J. M. Razal, J. Chen, Z. Lu, B. Wang, Adv. Mater. Interfaces 2017, 4, n/a. https://doi.org/10.1002/admi.201700588
[38] S. R. Das, Q. Nian, A. A. Cargill, J. A. Hondred, S. Ding, M. Saei, G. J. Cheng, J. C. Claussen, Nanoscale 2016, 8, 15870. https://doi.org/10.1039/C6NR04310K
[39] T. H. da Costa, E. Song, R. P. Tortorich, J.-W. Choi, ECS J. Solid State Sci. Technol. 2015, 4, S3044. https://doi.org/10.1149/2.0121510jss
[40] A. Phongphut, C. Sriprachuabwong, A. Wisitsoraat, A. Tuantranont, S. Prichanont, P. Sritongkham, Sens. Actuators B Chem. 2013, 178, 501. https://doi.org/10.1016/j.snb.2013.01.012
[41] M. Jović, Y. Zhu, A. Lesch, A. Bondarenko, F. Cortés-Salazar, F. Gumy, H. H. Girault, J. Electroanal. Chem. 2017, 786, 69. https://doi.org/10.1016/j.jelechem.2016.12.051
[42] C. E. Krause, B. A. Otieno, A. Latus, R. C. Faria, V. Patel, J. S. Gutkind, J. F. Rusling, ChemistryOpen 2013, 2, 141. https://doi.org/10.1002/open.201300018
[43] Z. Pu, R. Wang, J. Wu, H. Yu, K. Xu, D. Li, Sens. Actuators B Chem. 2016, 230, 801. https://doi.org/10.1016/j.snb.2016.02.115
[44] J. Chen, Y. Zhou, D. Wang, F. He, V. M. Rotello, K. R. Carter, J. J. Watkins, S. R. Nugen, Lab. Chip 2015, 15, 3086. https://doi.org/10.1039/C5LC00515A
[45] S. Cinti, F. Arduini, D. Moscone, G. Palleschi, L. Gonzalez-Macia, A. J. Killard, Sens. Actuators B Chem. 2015, 221, 187. https://doi.org/10.1016/j.snb.2015.06.054
[46] A. Lesch, F. Cortés-Salazar, M. Prudent, J. Delobel, S. Rastgar, N. Lion, J.-D. Tissot, P. Tacchini, H. H. Girault, J. Electroanal. Chem. 2014, 717–718, 61. https://doi.org/10.1016/j.jelechem.2013.12.027
[47] Y. Zhang, C. Liu, W. Shi, Z. Wang, L. Dai, X. Zhang, Langmuir 2007, 23, 7911. https://doi.org/10.1021/la700876d
[48] F. Liu, J. Y. Choi, T. S. Seo, Chem. Commun. 2010, 46, 2844. https://doi.org/10.1039/b923656b
[49] B. H. Kim, M. S. Onses, J. B. Lim, S. Nam, N. Oh, H. Kim, K. J. Yu, J. W. Lee, J.-H. Kim, S.-K. Kang, C. H. Lee, J. Lee, J. H. Shin, N. H. Kim, C. Leal, M. Shim, J. A. Rogers, Nano Lett. 2015, 15, 969. https://doi.org/10.1021/nl503779e
[50] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, D. Poulikakos, Nanotechnology 2007, 18, 345202. https://doi.org/10.1088/0957-4484/18/34/345202
[51] C. W. Sele, T. von Werne, R. H. Friend, H. Sirringhaus, Adv. Mater. 2005, 17, 997. https://doi.org/10.1002/adma.200401285
[52] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123. https://doi.org/10.1126/science.290.5499.2123
[53] L. Zhang, H. Liu, Y. Zhao, X. Sun, Y. Wen, Y. Guo, X. Gao, C. Di, G. Yu, Y. Liu, Adv. Mater. Deerfield Beach Fla 2012, 24, 436. https://doi.org/10.1002/adma.201103620
[54] E. D. Goluch, B. Wolfrum, P. S. Singh, M. A. G. Zevenbergen, S. G. Lemay, Anal. Bioanal. Chem. 2009, 394, 447. https://doi.org/10.1007/s00216-008-2575-x
[55] N. Y. Adly, B. Bachmann, K. J. Krause, A. Offenhäusser, B. Wolfrum, A. Yakushenko, 2017, 7, 5473. https://doi.org/10.1039/C6RA27170G
[56] Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, A. C. Arias, Adv. Mater. 2016, 28, 4373. https://doi.org/10.1002/adma.201504366
[57] H. Tao, B. Marelli, M. Yang, B. An, M. S. Onses, J. A. Rogers, D. L. Kaplan, F. G. Omenetto, Adv. Mater. 2015, 27, 4273. https://doi.org/10.1002/adma.201501425
[58] T. Vuorinen, J. Niittynen, T. Kankkunen, T. M. Kraft, M. Mäntysalo, Sci. Rep. 2016, 6, 35289. https://doi.org/10.1038/srep35289
[59] P. Chen, H. Chen, J. Qiu, C. Zhou, Nano Res. 2010, 3, 594. https://doi.org/10.1007/s12274-010-0020-x
[60] J. Wu, R. Wang, H. Yu, G. Li, K. Xu, N. C. Tien, R. C. Roberts, D. Li, Lab. Chip 2015, 15, 690. https://doi.org/10.1039/C4LC01121J
[61] S. L. Swisher, M. C. Lin, A. Liao, E. J. Leeflang, Y. Khan, F. J. Pavinatto, K. Mann, A. Naujokas, D. Young, S. Roy, M. R. Harrison, A. C. Arias, V. Subramanian, M. M. Maharbiz, Nat. Commun. 2015, 6, 6575. https://doi.org/10.1038/ncomms7575
[62] Y. Khan, M. Garg, Q. Gui, M. Schadt, A. Gaikwad, D. Han, N. A. D. Yamamoto, P. Hart, R. Welte, W. Wilson, S. Czarnecki, M. Poliks, Z. Jin, K. Ghose, F. Egitto, J. Turner, A. C. Arias, Adv. Funct. Mater. 2016, 26, 8764. https://doi.org/10.1002/adfm.201603763
[63] T. Roberts, J. B. De Graaf, C. Nicol, T. Hervé, M. Fiocchi, S. Sanaur, Adv. Healthc. Mater. 2016, 5, 1462. https://doi.org/10.1002/adhm.201600108
[64] G. Bertotti, D. Velychko, N. Dodel, S. Keil, D. Wolansky, B. Tillak, M. Schreiter, A. Grall, P. Jesinger, S. Röhler, M. Eickenscheidt, A. Stett, A. Möller, K. H. Boven, G. Zeck, R. Thewes, in 2014 IEEE Biomed. Circuits Syst. Conf. BioCAS Proc., 2014, pp. 304–307.
[65] J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, V. Viswam, I. L. Jones, M. Fiscella, R. Diggelmann, A. Stettler, U. Frey, D. J. Bakkum, A. Hierlemann, Lab. Chip 2015, 15, 2767. https://doi.org/10.1039/C5LC00133A
[66] T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, Proc. Natl. Acad. Sci. 2008, 105, 4976. https://doi.org/10.1073/pnas.0708340105
[67] B. Bachmann, N. Adly, J. Schnitker, A. Yakushenko, P. Rinklin, A. Offenhaeusser, B. Wolfrum, Flex. Print. Electron. 2017, DOI 10.1088/2058-8585/aa7928.
[68] P. C. Duineveld, J. Fluid Mech. 2003, 477, 175. https://doi.org/10.1017/S0022112002003117
[69] S. Dodds, M. S. Carvalho, S. Kumar, J. Fluid Mech. 2012, 707, 521. https://doi.org/10.1017/jfm.2012.296
[70] S. Kumar, Annu. Rev. Fluid Mech. 2015, 47, 67. https://doi.org/10.1146/annurev-fluid-010814-014620
[71] J. Stringer, B. Derby, Langmuir 2010, 26, 10365. https://doi.org/10.1021/la101296e
[72] Schnitker Jan, Adly Nouran, Seyock Silke, Bachmann Bernd, Yakushenko Alexey, Wolfrum Bernhard, Offenhäusser Andreas, Adv. Biosyst. 2018, 2, 1700136. https://doi.org/10.1002/adbi.201700136