Multicomponent Synthesis of Biologically Relevant Spiroheterocycles in Water


Multicomponent Synthesis of Biologically Relevant Spiroheterocycles in Water

Bubun Banerjee

This chapter deals with the up-to-date developments of one-pot multicomponent synthesis of biologically relevant spiroheterocycles in aqueous media. As the current topic is one of the challenging areas for today’s organic chemists, therefore the present chapter will surely be a valuable document to boost the on-going developments in this direction.

Spiroheterocycles, Multicomponent Reactions, Bioactivity, Aqueous Media, Green Synthesis

Published online 5/25/2019, 53 pages

Citation: Bubun Banerjee, Multicomponent Synthesis of Biologically Relevant Spiroheterocycles in Water, Materials Research Foundations, Vol. 50, pp 269-319, 2019


Part of the book on Industrial Applications of Green Solvents

[1] G. Brahmachari Handbook of pharmaceutical natural products, 1st Ed. Wiley-VCH, Weinheim (2010).
[2] G. Brahmachari, Green synthetic approaches for biologically relevant heterocycles, Elsevier, Amsterdam, The Netherland, (2014).
[3] M. Sannigrahi, Stereocontrolled synthesis of spirocyclics, Tetrahedron 55 (1999) 9007-9071.
[4] D.M. James, H.B. Kunze, D.J. Faulkner, Two new brominated tyrosine derivatives from the Sponge Druinella (=psammaplysilla) purpurea, J. Nat. Prod. 54 (199) 1137-1140.
[5] J. Kobayashi, M. Tsuda, K. Agemi, H. Shigemiri, M. Ishibashi, T. Sasaki, Y. Mikami, Purealidins B and C, new bromotyrosine alkaloids from the okinawan marine sponge Psammaplysilla Purea, Tetrahedron 47 (1991) 6617-6622.
[6] N. Deppermann, H. Thomanek, A.H.G.P. Prenzel, W. Maison, Pd-catalyzed assembly of spirooxindole natural products: A short synthesis of horsfiline, J. Org. Chem. 75 (2010) 5994-6000.
[7] E.D. Ananiev, K. Ananieva, G. Abdulova, N. Christova, E. Videnova. Effect of abamectin on protein and RNA synthesis in primary leaves of Cucurbita pepo L. (zucchini), Bulg. J. Plant. Physiol. 28 (2002) 85-91.
[8] M.G. Kulkarni, A.P. Dhondge, S.W. Chavhan, A.S. Borhade, Y.B. Shaikh, D.R. Birhade, M.P. Desai, N.R. Dhatrak, Total synthesis of (±)-coerulescine and (±)-horsfiline, Beilstein J. Org. Chem. 6 (2010) 876-879.
[9] D.J. Goldsmith, G. Srouji, C. Kwong. Insect antifeedants. Diels-Alders approach to the synthesis of ajugarin I, J. Org. Chem. 43 (1978) 3182-3188.
[10] G.R. Martinez, P.A. Grieco, E. Williams, K. Kanai, C.V. Srinivasan. Stereocontrolled total synthesis of antibiotic A-23187 (calcimycin), J. Am. Chem. Soc. 104 (1982) 1436-1438.
[11] A. Yokosuka, J. Mitsuno, S. Yui, M. Yamazaki, Y. Mimaki. Steroidal glycosides from Agave utahensis and their cytotoxic activity, J. Nat. Prod. 72 (2009) 1399-1404.
[12] J. Yang, X.Z. Wearing, P.W.L. Quesne, J.R. Deschamps, J.M. Cook, Enantiospecific synthesis of (+)-Alstonisine via a stereospecific osmylation process, J. Nat. Prod. 71 (2008) 1431-1440.
[13] M. Miyakoshi, Y. Tamura, H. Masuda, K. Mizutani, O. Tanaka, T. Ikeda, K. Ohtani, R. Kasai, K. Yamasaki. Steroidal saponins from Yucca schidigera (Mohave Yucca), a new antifood-deteriorating agent, J. Nat. Prod. 63 (2000) 332-338.
[14] K. Tanaka, F. Uchiyama, K. Sakamoto. Stereocontrolled total synthesis of (+)- coriamyrtin, J. Am. Chem. Soc. 104 (1982) 4965-4967.
[15] Y. Ma, C. Fan, B. Jia, P. Cheng, J. Liu, Y. Ma, K. Qiao. Total synthesis and biological evaluation of spirotryprostatin A analogs, Chirality 29 (2017) 737-746.
[16] D.L. Klass, M. Fiese, L.F. Fieser. Digitogenin, J. Am. Chem. Soc. 77 (1955) 3829-3833.
[17] Y. Kita, K. Higuchi, Y. Yoshida, K. Iio, S. Kitagaki, K. Ueda, S. Akai, H. Fujioka. Enantioselective total synthesis of a potent antitumor antibiotic, fredericamycin A, J. Am. Chem. Soc. 123 (2001) 3214-3222.
[18] D.F. Taber, T.E. Christos, A.L. Rheingold, I.A. Guzei. Synthesis of (−)-fumagillin, J. Am. Chem. Soc. 121 (1999) 5589-5590.
[19] T.-H. Kang, K. Matsumoto, M. Tohda, Y. Murakami, H. Takayama, M. Kitajima, N. Aimi, H. Watanabe, Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT2 receptors expressed in Xenopus oocyte, Eur. J. Pharm. 444 (2002) 39-45.
[20] M.H. Rønnest, B. Rebacz, L. Markworth, A.H. Terp, T.O. Larsen, A. Krämer, M.H. Clausen. Synthesis and structure-activity relationship of griseofulvin analogues as inhibitors of centrosomal clustering in cancer cells, J. Med. Chem. 52 (2009) 3342-3347.
[21] B. Witkop. Gelsemine, J. Am. Chem. Soc. 70 (1948) 1424-1427.
[22] A.A. Mahmoud, A.A. Ahmed, T. Tanaka, M. Iinuma. Diterpenoid acids from grindelia nana, J. Nat. Prod. 63 (2000) 378-380.
[23] M.P. DeNinno, P.A. McCarthy, K.C. Duplantier, C. Eller, J.B. Etienne, M.P. Zawistoski, F.W. Bangerter, C.E. Chandler, L.A. Morehouse, E.D. Sugarman, R.W. Wilkins, H.A. Woody, L.M. Zaccaro, Steroidal glycoside cholesterol absorption inhibitors, J. Med. Chem. 40 (1997) 2547-2554.
[24] J.F.M. Da-Silva, S.J. Garden, A.C. Pinto, The chemistry of isatins: a review from 1975 to 1999, J. Braz. Chem. Soc. 12 (2001) 273-324.
[25] M. Claire, H. Faraj, G. Grassy, A. Aumelas, A. Rondot, G. Auzou. Synthesis of new 11 beta-substituted spirolactone derivatives. Relationship with affinity for mineralocorticoid and glucocorticoid receptors, J. Med. Chem, 36 (1993) 2404-2407.
[26] M.J. Kornet, A.P. Thio, Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local anesthetic activity, J. Med. Chem. 19 (1976) 892-898.
[27] C.J. Swain, R. Baker, C. Kneen, R. Herbert, J. Moseley, J. Saunders, E.M. Seward, G.I Stevenson, M. Beer, Novel 5-HT3 antagonists: indol-3-ylspiro(azabicycloalkane-3,5′(4’H)-oxazoles), J. Med. Chem. 35 (1992) 1019-1031.
[28] E.A. Laude, D. Bee, O. Crambes, P. Howard, Antitussive and antibronchoconstriction actions of fenspiride in guinea-pigs, Eur. Respir. J. 8 (1995) 1699-1704.
[29] P. Rosenmond, M. Hosseini-Merescht, C. Bub, Ein einfacher Zugang zu den tetracyclischen Vorlaufern der Hetero- und Secoyohimbane, Strychnos-und Oxindolalkaloide, Liebigs Ann. Chem. 2 (1994) 151-154.
[30] M. Carmignani, A.R. Volpe, F.D. Monache, B. Botta, R. Espinal, S.C.D Bonnevaux, C.D. Luca, M. Botta, F. Corelli, A. Tafi, G. Ripanti, G.D. Monache, Novel hypotensive agents from Verbesina caracasana. 6. Synthesis and pharmacology of caracasandiamide, J. Med. Chem. 42 (1999) 3116-3125.
[31] J.R. Atack, The benzodiazepine binding site of GABA(A) receptors as a target for the development of novel anxiolytics, Expert Opin. Investig. Drug. 14 (2005) 601-618.
[32] T. Okita, M. Isobe, Synthesis of the pentacyclic intermediate for dynemicin a and unusual formation of spiro-oxindole ring, Tetrahedron 50 (1994) 11143-11152.
[33] R. Sarges, J. Bordner, B.W. Dominy, M.J. Peterson, E.B. Whipple, Synthesis, absolute configuration, and conformation of the aldose reductase inhibitor sorbinil, J. Med. Chem. 28 (1985) 1716-1720.
[34] I. Inada, H. Satoh, N. Inatomi, H. Nagaya, Y. Maki, Spizofurone, a new anti-ulcer agent, increases alkaline secretion in isolated bullfrog duodenal mucosa, Eur. J. Pharmacol. 124 (1986) 149-155.
[35] E.M. Smith, G.F. Swiss, B.R. Neustadt, P. McNamara, E.H. Gold, E.J. Sybertz, T. Baum, Angiotensin-converting enzyme inhibitors: spirapril and related compounds, J. Med. Chem. 32 (1989) 1600-1606.
[36] B. Banerjee, Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles, Ultrason. Sonochem. 35 (2017) 15-35.
[37] B.H. Rotstein, S. Zaretsky, V. Rai, A.K. Yudin, Small heterocycles in multicomponent reactions, Chem. Rev. 114 (2014) 8323-8359.
[38] B. Banerjee, Recent developments on organo-bicyclo-bases catalyzed multi-component synthesis of biologically relevant heterocycles, Curr. Org. Chem. 22 (2018) 208-233.
[39] A. Chanda, V.V.Fokin, Organic synthesis “on water”, Chem. Rev. 109 (2009) 725.
[40] R.A. Sheldon, Selective catalytic synthesis of fine chemicals: opportunities and trends, J. Mol. Catal. A Chem. 107 (1996) 75-83.
[41] R. Ghahremanzadeh, S.C. Azimi, N. Gholami, A. Bazgir, Clean synthesis and antibacterial activities of spiro[pyrimido[4,5-b]-quinoline-5,5′-pyrrolo[2,3-d]pyrimidine]-pentaones, Chem. Pharm. Bull. 56 (2008) 1617-1620.
[42] A. Alizadeh, A. Mikaeili, T. Firuzyar, One-pot pseudo five-component synthesis of spirooxindole derivatives containing fused 1,4-dihydropyridines in water, Synthesis 44 (2012) 1380-1384.
[43] K. Jadidi, R. Ghahremanzadeh, P. Mirzaei, A. Bazgir, Three-component synthesis of spiro[indoline-3,5′-pyrimido[4,5-b]quinoline]-triones in water, J. Heterocyclic Chem. 48 (2011) 1014-1018.
[44] Z. Wang, L. Gao, Z. Xu, Z. Ling, Y. Qin, L. Rong, S.-J. Tu, Green synthesis of novel spiro[indoline-3,4′-pyrazolo[3,4-b]pyridine]-2,3′(7’H)-dione, spiro[indeno [1,2-b]pyrazolo[4,3-e]pyridine-4,3′-indoline]-2′,3-dione and spiro[benzo[h] pyrazolo[3,4-b]quinoline-7,3′-indoline]-2′,8(5H)-dione derivatives in aqueous medium, Tetrahedron 73 (2017) 385-394.
[45] G.-P. Lu, C. Cai, An efficient, one-pot synthesis of spiro[dihydropyridine-oxindole]compounds under catalyst-free conditions, J. Chem. Res. 2011 (2011) 547-551.×13157531279974
[46] M. Narasimhulu, Y.R. Lee, Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivatives, Tetrahedron 67 (2011) 9627-9634.
[47] A.V. Chate, S.P. Kamdi, A.N. Bhagata, J.N. Sangshetti, C.H. Gill, β-Cyclodextrin catalyzed one-pot four component auspicious protocol for synthesis of spiro[acridine-9,3′-indole]-2′,4,4′(1′H,5′H,10H)-trione as a potential antimicrobial agent, Synth. Commun. 48 (2018) 1701-1714.
[48] B. Jiang, L.J. Cao, S.J. Tu, W.R. Zheng, H.Z. Yu, Highly diastereoselective domino synthesis of 6-spirosubstituted pyrido[2,3-d]pyrimidine derivatives in water, J. Comb. Chem. 11 (2009) 612-616.
[49] X.S. Wang, M.M. Zhang, H. Jiang, C.S. Yao, S.J. Tu, Unexpected spiro-benzoquinolines in the reaction of N-(arylidene)naphthalen-2-amine, arylaldehyde, and 1,3-dimethylbarbituric acid in water, Chem. Lett. 36 (2007) 450-451.
[50] S.J. Kalita, B. Das, D.C. Deka, A quick, simple and clean synthesis of spiro(indoline-3,4’-pyrazolo[4’,3’:5,6]pyrido[2,3-d]pyrimidines) in water through a novel one-pot multicomponent reaction, Chemistry Select 2 (2017) 5701-5706.
[51] R. Ghahremanzadeh, M. Sayyafi, S. Ahadi, A. Bazgir, Novel one-pot, three-component synthesis of spiro[indoline-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine]trione library, J. Comb. Chem. 11 (2009) 393-396.
[52] R. Ghahremanzadeh, Z. Rashid, A.H. Zarnani, H. Naeimi, Inorganic-organic hybrid silica based tin complex as a novel, highly efficient and recyclable heterogeneous catalyst for the one-pot preparation of spirooxindoles in water, Dalton Trans. 43 (2014) 15791-15797.
[53] K. Balamurugan, S. Perumal, J.C. Menéndez, New four-component reactions in water: a convergent approach to the metal-free synthesis of spiro[indoline/acenaphthylene-3,4′-pyrazolo[3,4-b]pyridine derivatives, Tetrahedron 67 (2011) 3201-3208.
[54] J. Quiroga, S. Portillo, A. Pérez, J. Gálvez, R. Abonia, B. Insuasty, An efficient synthesis of pyrazolo[3,4-b]pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic -diketones, Tetrahedron Lett. 52 (2011) 2664-2666.
[55] A. Kamal, K.S. Babu, M.V.P.S. V. Vardhan, S.M.A. Hussaini, R. Mahesh, S.P. Shaika, A. Alarifi, Sulfamic acid promoted one-pot three-component synthesis and cytotoxic evaluation of spirooxindoles, Bioorg. Med. Chem. Lett. 25 (2015) 2199-2202.
[56] M. Dabiri, Z.N. Tisseh, M. Nobahar, A. Bazgir, Organic reaction in water: a highly efficient and environmentally friendly synthesis of spiro compounds catalyzed by L-proline, Helvetica Chimica Acta 94 (2011) 824-830.
[57] S. Ahadi, R. Ghahremanzadeh, P. Mirzaei, A. Bazgir, Synthesis of spiro[benzopyrazolonaphthyridine-indoline]-diones and spiro[chromenopyrazolo-pyridine-indoline]-diones by one-pot, three-component methods in water, Tetrahedron 65 (2009) 9316-9321.
[58] A. Bazgir, S. Ahadi, R. Ghahremanzadeh, H. R. Khavasi, P. Mirzaei, Ultrasound-assisted one-pot, three-component synthesis of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridine]-2,6′(1′H)-diones in water, Ultrason. Sonochem. 17 (2010) 447-452.
[59] A. Dandia, A.K. Laxkar, R. Singh, New multicomponent domino reaction on water: highly diastereoselective synthesis of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines] catalyzed by NaCl, Tetrahedron Lett. 53 (2012) 3012-3017.
[60] G. Harichandran, K.S. Devi, P. Shanmugam, M.I. Jesse, K. Kathiravan, Amberlite IRA-400 Cl resin catalyzed multicomponent organic synthesis in water: synthesis, antimicrobial and docking studies of spiroheterocyclic 2-oxindoles and acenaphthoquinone, Current Organocatal. 5 (2018) 13-24.
[61] R. Ghahremanzadeh, T. Amanpour, M. Sayyafi, A. Bazgir, One-pot, three-component synthesis of spironaphthopyrano[2,3-d]pyrimidine-5,3′-indolines in water, J. Heterocyclic Chem. 47, (2010) 421-424.
[62] D.L. Kong, G.P. Lu, M.S. Wu, Z.F. Shi, Qiang Lin, One-Pot, catalyst-free synthesis of spiro[dihydroquinolinenaphthofuranone] compounds from isatins in water triggered by hydrogen bonding effects, ACS Sustainable Chem. Eng. 5 (2017) 3465-3470.
[63] L. Zhao, B. Zhou, Y. Li, An efficient one-pot three-component reaction for synthesis of spirooxindole derivatives in water media under catalyst-free condition, Heteroatom Chem. 22 (2011) 673-677.
[64] S.L. Zhu, S.J. Jia, Y. Zhang, A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium, Tetrahedron 63 (2007) 9365-9372.
[65] A. Mobinikhaledi, N. Foroughifar, M.A.B. Fard, Simple and efficient method for three-component synthesis of spirooxindoles in aqueous and solvent-free media, Synth. Commun. 41 (2011) 441-450.
[66] N.G. Singh, M. Lily, S.P. Devi, N. Rahman, A. Ahmed, A.K. Chandra, R. Nongkhlaw, Synthetic, mechanistic and kinetic studies on the organo-nano catalyzed synthesis of oxygen and nitrogen containing Spiro compounds under ultrasonic condition, Green Chem. 18 (2016) 4216-4227.
[67] Y. Li, H. Chen, C. Shi, D. Shi, S. Ji, Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium, J. Comb. Chem. 12 (2010) 231-237.
[68] G.S. Hari, Y.R. Lee, Efficient one-pot synthesis of spirooxindole derivatives by ethylenediamine diacetate catalyzed reactions in water, Synthesis 2010 (2010) 0453-0464.
[69] R. Ghahremanzadeh, T. Amanpour, A. Bazgir, Clean synthesis of spiro[indole-3,8′-phenaleno[1,2-b]pyran]-9′-carbonitriles and spiro[indole-3,4′-pyrano[4,3-b]pyran]-3′-carbonitriles by one-pot, three-component reactions, J. Heterocyclic Chem. 47 (2010) 46-49.
[70] A.R. Karimi, F. Sedaghatpour, Novel mono- and bis(spiro-2-amino-4H-pyrans): alum-catalyzed reaction of 4-hydroxycoumarin and malononitrile with isatins, quinones, or ninhydrin, Synthesis 2010 (2010) 1731-1735.
[71] S. Gholizadeh, K. Radmoghadam, Ultrasound-assisted three-component synthesis of spiro[4H-pyrano[3,2-c]quinolin-4,3′-indoline]-2′,5(6H)-diones in water, Orient. J. Chem. 29 (2013) 1637-1641.
[72] A. Dandia, A.K. Jain, D.S. Bhati, NaCl as a novel and green catalyst for the synthesis of biodynamic spiro heterocycles in water under sonication, Synth. Commun. 41 (2011) 2905-2919.
[73] Y. Liu, D Zhou, Z. Ren, W. Cao, J. Chen, H. Deng, Q. Gu, A green efficient synthesis of spiro[indoline-3,4′(1H’)-pyrano[2,3-c]pyrazol]-2-one derivatives, J. Chem. Soc. 2009 (2009) 154-156.×416875
[74] S. Ahadi, Z. Yasaei, A. Bazgir, A clean and one-pot synthesis of spiroindoline-pyranopyrazoles, J. Heterocyclic Chem. 47 (2010) 1090-1094.
[75] R. Shrestha, K. Sharma, Y.R. Lee, Y.-J. Wee, Cerium oxide-catalyzed multicomponent condensation approach to spirooxindoles in water, Mol. Divers 20 (2016) 847-858.
[76] P. Mukherjee, S. Paul, A.R. Das, Expeditious synthesis of functionalized tricyclic 4-spiro pyrano[2,3-c]pyrazoles in aqueous medium using dodecylbenzenesulphonic acid as a Brønsted acid-surfactantcombined catalyst, New J. Chem. 39 (2015) 9480-9486.
[77] C. Cheng, B. Jiang, S.J. Tu, G. Li, [4+2+1] Domino cyclization in water for chemo- and regioselective synthesis of spiro-substituted benzo[b]furo[3,4-e][1,4]diazepine derivatives, Green Chem. 13 (2011) 2107-2115.
[78] N. Ma, B. Jiang, G. Zhang, S.-J. Tu, W. Wever, G. Li, New multicomponent domino reactions (MDRs) in water: highly chemo-, regio- and stereoselective synthesis of spiro{[1,3]dioxanopyridine}-4,6-diones and pyrazolo[3,4-b]pyridines, Green Chem. 12 (2010) 1357-1361.
[79] K. Arya, D.S. Rawat, H. Sasai, Zeolite supported Brønsted-acid ionic liquids: An eco approach for synthesis of spiro[indole-pyrido[3,2-e]thiazine] in water under ultrasonication, Green Chem. 14 (2012) 1956-1963.
[80] A. Dandia, R. Singh, J. Joshi, S. Maheshwari, P. Soni, Ultrasound promoted catalyst-free and selective synthesis of spiro[indole-3,49-pyrazolo[3,4-e][1,4]thiazepines] in aqueous media and evaluation of their anti-hyperglycemic activity, RSC Adv. 3 (2013) 18992-19001.
[81] M. Kumar, A.K. Arya, J, George, K. Arya, R.T. Pardasani, DFT studied hetero-diels–alder cycloaddition for the domino synthesis of spiroheterocycles fused to benzothiazole and chromene/pyrimidine rings in aqueous media, J. Heterocyclic Chem. 54 (2017) 3418-3426.
[82] A.K. Arya, M. Kumar, An efficient green chemical approach for the synthesis of structurally diverse spiroheterocycles with fused heterosystems, Green Chem. 13 (2011) 1332-1338.
[83] A. Preetam, M. Nath, Ambient temperature synthesis of spiro[indoline-3,2’ thiazolidinones] by a DBSA-catalyzed sequential reaction in water, Tetrahedron Lett. 57 (2016) 1502-1506.
[84] A. Dandia, R. Singh, S. Bhaskaran, S.D. Samant, Versatile three component procedure for combinatorial synthesis of biologically relevant scaffold spiro[indole-thiazolidinones] under aqueous conditions, Green Chem. 13 (2011) 1852-1859.
[85] S.S. Panda, N. Jain, N. Jehan, S. Bhagat, S.C. Jain, An eco-friendly synthesis of some novel symmetrical bis spiro-indoles, Phosphorus, Sulfur, and Silicon, 187 (2012) 101-111.
[86] E.M. Hussein, A.M. El-Khawaga, Simple and clean procedure for three-component syntheses of spiro{pyrido[2,1-b]benzothiazole-3,3′-indolines} and spiro{thiazolo[3,2-a]pyridine-7,3′-indolines} in aqueous medium, J. Heterocyclic Chem. 49 (2012) 1296-1301.