Supercritical Carbon Dioxide in Esterification Reactions

$20.00

Supercritical Carbon Dioxide in Esterification Reactions

Baithy Mallesham, A. Jeyanthi, Pothu Ramyakrishna, Boddula Rajender

Green and sustainable solvents are gaining attention in the research institutes and industries owing to the minimal influence on the environment. The importance of supercritical fluids is associated with their “tunable” properties that could be easily altered by monitoring reaction parameters like pressure and temperature. The physical properties of supercritical fluids are in-between the gases and liquids. Therefore, ScCO2 is used as an environmentally friendly solvent in various esterification reactions.

Keywords
Green Solvent, Supercritical CO2, Esterification, Critical Temperature, Critical Pressure, Biocatalyst

Published online 5/25/2019, 27 pages

Citation: Baithy Mallesham, A. Jeyanthi, Pothu Ramyakrishna, Boddula Rajender, Supercritical Carbon Dioxide in Esterification Reactions, Materials Research Foundations, Vol. 50, pp 242-268, 2019

DOI: https://doi.org/10.21741/9781644900239-8

Part of the book on Industrial Applications of Green Solvents

References
[1] C.J. Clarke, W.C. Tu, O. Levers, A. Brohl, J.P. Hallett, Green and sustainable solvents in chemical processes, Chem. Rev. 118 (2018) 747-800. https://doi.org/10.1021/acs.chemrev.7b00571
[2] R.S. Oakes, A.A. Clifford, C.M. Rayner, The use of supercritical fluids in synthetic organic chemistry, J. Chem. Soc., Perkin Trans. 1 (2001) 917-941. https://doi.org/10.1039/b101219n
[3] B. Mallesham, P. Sudarsanam, G. Raju, B.M. Reddy, Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol, Green Chem. 15(2013) 478-489. https://doi.org/10.1039/c2gc36152c
[4] R.T. Baker, W. Tumas, Toward greener chemistry, Sci. 284 (1999) 1477-1479.
[5] P.T. Anastas, T.C. Williamson, Green Chemistry: Frontiers in benign chemical syntheses and processes, Oxford University Press, Oxford, 1998.
[6] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and practice, Oxford University Press, Oxford, 1998.
[7] T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99 (1999) 2071-2084. https://doi.org/10.1021/cr980032t
[8] E. Buncel, R. Stairs, H. Wilson, The role of the solvent in chemical reactions, Oxford University Press, UK, 2003.
[9] S. Abou-Shehada, J.H. Clark, G. Paggiola, J. Sherwood, Tunable solvents: Shades of green, Chem. Eng. Process. 99 (2016) 88-96. https://doi.org/10.1016/j.cep.2015.07.005
[10] R.A. Sheldon, Green solvents for sustainable organic synthesis: State of the art, Green Chem. 7 (2005) 267-278. https://doi.org/10.1039/b418069k
[11] B. Mallesham, P. Sudarsanam, B.M. Reddy, Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystallineSnO2-based solid acids, Catal. Sci. Technol. 4 (2014) 803-813. https://doi.org/10.1039/c3cy00825h
[12] B. Mallesham, P. Sudarsanam, B.M. Reddy, Production of biofuel additives from esterification and acetalization of bioglycerol over SnO2 based solid acids, Ind. Eng. Chem. Res. 53 (2014) 18775-18785. https://doi.org/10.1021/ie501133c
[13] I.T. Horvath, Fluorous biphase chemistry, Acc. Chem. Res. 31 (1998) 641-650. https://doi.org/10.1021/ar970342i
[14] B. Betzemeier, P. Knochel, Perfluorinated solvents a novel reaction medium in organic chemistry, Top. Curr. Chem. 206 (1999) 60-68. https://doi.org/10.1007/3-540-48664-x_3
[15] J.P. Genet, M. Savignac, Recent developments of palladium (0) catalyzed reactions in aqueous medium, J. Organomet. Chem. 576 (1999) 305-317. https://doi.org/10.1016/s0022-328x(98)01088-2
[16] S. Kobayashi, Scandium triflate in organic synthesis, Eur. J. Chem. 1999 (1999) 15-27.
[17] D.A. Canelas, D.E. Betts, J.M. DeSimone, M.Z. Yates, K.P. Johnson, Poly(vinyl acetate) and poly(vinyl acetate-co-ethylene) latexes via dispersion polymerizations in carbon dioxide, Macromolecules, 31 (1998) 6794-6805. https://doi.org/10.1021/ma980596z
[18] M. McCoy, Chem. Eng. News, June 14th, 1999, 11.
[19] M. McCoy, Chem. Eng. News, June 14th, 1999, 13; see also http://www.micell.com.
[20] M.D. Donohue, J.L. Geiger, A.A. Kiamos, K.A. Nielsen, Green chemistry, ACS Symp. Ser., Am. Chem. Soc. Washington, 626 (1996) 152-167.
[21] R. Scott Oakes, A.A. Clifford, C.M. Rayner, The use of supercritical fluids in synthetic organic chemistry, J. Chem. Soc. Perkin Trans. 1 (2001) 917-941. https://doi.org/10.1039/b101219n
[22] W. Leitner, Green chemistry: Designed to dissolve, Nature 405 (2000) 129-130.
[23] H.R. Hobbs, N.R. Thomas, Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions, Chem. Rev. 107 (2007) 2786-2820. https://doi.org/10.1021/cr0683820
[24] S. Sabeder, M. Habulin, Z. Knez, Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide, Ind. Eng. Chem. Res. 44 (2005) 9631-9635. https://doi.org/10.1021/ie050266k
[25] R.S. Oakes, A.A. Clifford, C.M. Rayner, The use of supercritical fluids in synthetic organic chemistry, J. Chem. Soc., Perkin Trans. 1 (2001) 917-941. https://doi.org/10.1039/b101219n
[26] X. Wang, L. Wang, X. Chen, D. Zhou, H. Xiao, X. Wei, J. Liang, Catalytic methyl esterification of colophony over ZnO/SFCCR with subcritical CO2: Catalytic performance, reaction pathway and kinetics, R. Soc. open sci. 5 (2018) 172124-172139. https://doi.org/10.1098/rsos.172124
[27] K. Rezaei, F. Temellib, E. Jena, Effects of pressure and temperature on enzymatic reactions in supercritical fluids, Biotechnol. Adv. 25 (2007) 272-280.
[28] M. Esteki, M. Rezayat, H.S. Ghaziaskar, T. Khayamian, Application of QSPR for prediction of percent conversion of esterification reactions in supercritical carbon dioxide using least squares support vector regression, J. Supercrit. Fluids, 54 (2010) 222-230. https://doi.org/10.1016/j.supflu.2010.04.007
[29] O. Hemminger, A. Marteel, M.R. Mason, J.A. Davies, A.R. Tadd, M.A. Abraham, Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects, Green Chem. 4 (2002) 507-512. https://doi.org/10.1039/b204822c
[30] W. Leitner, Reactions in Supercritical Carbon Dioxide (ScCO2). In: P. Knochel (eds.), Modern Solvents in Organic Synthesis, Springer, Top. Cur. Chem. 206 (1999) 107-132. https://doi.org/10.1007/3-540-48664-x_5
[31] Z. Knez, Enzymatic reactions in dense gases, J. Supercrit. Fluids, 47 (2009) 357-372.
[32] G.K. Nagesha, B. Manohar, K.U. Sankar, Enzymatic esterification of free fatty acids of hydrolyzed soy deodorizer distillate in supercritical carbon dioxide, J. Supercrit. Fluids, 32 (2004) 137-145. https://doi.org/10.1016/j.supflu.2004.02.001
[33] M. Habulin, M. Primozic, Z. Knez, Stability of proteinase form Carica papaya latex in dense gases, J. Supercrit. Fluids 33 (2005) 27-34.
[34] J. McHardy, S.P. Sawan (Eds.), Supercritical fluid cleaning: Fundamental, technology and applications, Noyes Publications, New Jersey, 1998.
[35] K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phy. 20 (1952) 722-725. https://doi.org/10.1063/1.1700523
[36] Y. Huang, L. Wang, X. Chen, X. Wei, J. Liang, W. Li, Intrinsic kinetics study of rosin hydrogenation on a nickel catalyst supported on spent equilibrium catalyst. Rsc. Adv. 7 (2017) 780-788. https://doi.org/10.1039/c7ra03611f
[37] F. Ren, Y. Zheng, X. Liu, L. Ma, W. Li, An investigation of the oxidation mechanism of abietic acid using two-dimensional infrared correlation spectroscopy, J. Mole. Struct. 1084 (2015) 236-243. https://doi.org/10.1016/j.molstruc.2014.12.055
[38] M.D. Romero, L. Calvo, C. Alba, M. Luis, The production of flavor esters in supercritical carbon dioxide, Proceedings of the Sixth International Symposium on Supercrit. Fluids, 2 (2003) 1445-1450.
[39] M.D. Romero, L. Calvo, C. Alba, M. Habulin, M. Primozi, Z. Knez, Enzymatic synthesis of isoamyl acetate with immobilized Candida Antarctica lipase in supercritical carbon dioxide, J. Supercrit. Fluids, 33 (2005) 77-84. https://doi.org/10.1016/j.supflu.2004.05.004
[40] J.S. Brown, H.P. Lesutis, D.R. Lamb, D. Bush, K. Chandler, B.L. West, C.L. Liotta, C.A. Eckert, D. Schiraldi, J.S. Hurley, Supercritical fluid separation for selective quaternary ammonium salt promoted esterification of terephthalic, Ind. Eng. Chem. Res. 38 (1999) 3622-3627. https://doi.org/10.1021/ie990040f
[41] K.C. Badgujar, B.M. Bhanage, Synthesis of geranyl acetate in nonaqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study, Process Biochem. 49 (2014) 1304-1313. https://doi.org/10.1016/j.procbio.2014.04.014

[42] G.D. Yadav, P.S. Lathi, Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies, J. Mol. Catal. B: Enzym. 27 (2004) 113-119. https://doi.org/10.1016/j.molcatb.2003.10.004
[43] M. Habulin, S. Sabeder, M. Paljevac, M. Primozi, Z. Knez, Lipase-catalyzed esterification of citronellol with lauric acid in supercritical carbon dioxide/co-solvent media, J. Supercrit. Fluids, 43 (2007) 199-203. https://doi.org/10.1016/j.supflu.2007.05.001
[44] M. Habulin, S. Sabeder, M.A. Sampedro, Z. Knez, Enzymatic synthesis of citronellol laurate in organic media and supercritical carbon dioxide, Biochem. Eng. J. 42 (2008) 6-12. https://doi.org/10.1016/j.bej.2008.05.012
[45] A.Z. Abdullah, N.S. Sulaiman, A.H. Kamaruddin, Biocatalytic esterification of citronellol with lauric acid by immobilized lipase on aminopropyl-grafted mesoporous SBA-15, Biochem. Eng. J. 44 (2009) 263-270. https://doi.org/10.1016/j.bej.2009.01.007
[46] S. Srivastava, G. Madras, J.M. Modak, Esterification of myristic acid in supercritical carbon dioxide, J. Supercrit. Fluids, 27 (2003) 55-64. https://doi.org/10.1016/s0896-8446(02)00191-2
[47] R.J.T. Sophie Colombié, J.S. Condoret, A. Marty, Water activity control: Away to improve the efficiency of continuous lipase esterification, Biotechnol. Bioeng. 60 (1998) 362-368. https://doi.org/10.1002/(sici)1097-0290(19981105)60:3%3C362::aid-bit13%3E3.0.co;2-o
[48] K.J. Liu, Y.R. Huang, Lipase-catalyzed production of a bioactive terpene ester in supercritical carbon dioxide, J. Biotechnol. 146 (2010) 215-220. https://doi.org/10.1016/j.jbiotec.2010.02.017
[49] S. Srivastava, J. Modak, G. Madras, Enzymatic synthesis of flavors in supercritical carbon dioxide, Ind. Eng. Chem. Res. 41 (2002) 1940-1945. https://doi.org/10.1021/ie010651j
[50] J.S. Condoret, S. Vankan, X. Joulia, A. Marty, Prediction of water adsorption curves for heterogeneous biocatalysis in organic and supercritical solvents, Chem. Eng. Sci. 52 (1997) 213-220. https://doi.org/10.1016/s0009-2509(96)00413-7
[51] N. Fontes, J. Partridge, P.J. Halling, S. Barreiros, Zeolite molecular sieves have dramatic acid–base effects on enzymes in nonaqueous media, Biotechnol. Bioeng. 77 (2002) 296-305. https://doi.org/10.1002/bit.10138
[52] N. Harper, S. Barreiros, Enhancement of enzyme activity in supercritical carbon dioxide via changes in acid-base conditions, Biotechnol. Prog. 18 (2002) 1451-1454. https://doi.org/10.1021/bp025602w
[53] N. Fontes, N. Harper, P.J. Halling, S. Barreiros, Salt hydrates for in situ water activity control have acid-base effects on enzymes in nonaqueous media, Biotechnol. Bioeng. 82 (2003) 802-808. https://doi.org/10.1002/bit.10627
[54] M. Tao, Q. Li, J. Qu, M. Zhang, Enzymatic synthesis of dipalmitin in supercritical carbon dioxide and mechanism study, Ind. Eng. Chem. Res. 52 (2013) 13528-13535. https://doi.org/10.1021/ie4015364
[55] M.V. Oliveira, S.F. Rebocho, A.S. Ribeiro, E.A. Macedo, J.M. Loureiro, Kinetic modelling of decyl acetate synthesis by immobilized lipase-catalyzed transesterification of vinyl acetate with decanol in supercritical carbon dioxide, J. Supercrit. Fluids, 50 (2009) 138-145. https://doi.org/10.1016/j.supflu.2009.05.003
[56] C. Pereyra, D. Gordillo, E.J.M. De La Ossa, Supercritical fluid-solid phase equilibria calculations by cubic equations of state and empirical equations: application to the palmitic acid + carbon dioxide system, J. Chem. Eng. Data 49 (2004) 435-438. https://doi.org/10.1021/je0340598
[57] S. Sabeder, M. Habulin, Ž. Knez, Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide, Ind. Eng. Chem. Res. 44 (2005) 9631-9635. https://doi.org/10.1021/ie050266k
[58] D.W. Chung, M.H. Cho, A comparative study on the effect of commercialized immobilized lipases on the selective synthesis of 1,3-diglyceride, J. Korean Ind. Eng. Chem. 21 (2010) 452.
[59] Z. Guo, Y. Sun, Solvent-free production of 1,3-diglyceride of CLA: Strategy consideration and protocol design, Food Chem. 100 (2007) 1076-1084. https://doi.org/10.1016/j.foodchem.2005.11.011
[60] M. Habulin, S. Šabeder, M. Paljevac, M. Primozic, Z. Knez, Lipase-catalyzed esterification of citronellol with lauric acid in supercritical carbon dioxide/co-solvent media, J. Supercrit. Fluids, 43 (2007) 199-203. https://doi.org/10.1016/j.supflu.2007.05.001
[61] J. Gregorowicz, Solubilities of lactic acid and 2-hydroxyhexanoic acid in supercritical CO2, Fluid Phase Equilibria, 166 (1999) 39-46. https://doi.org/10.1016/s0378-3812(99)00283-6
[62] J. Gregorowicz, P. Bernatowicz, Phase behavior of l-lactic acid based polymers of low molecular weight in supercritical carbon dioxide at high pressures, J. Supercrit. Fluids, 51 (2009) 270-277. https://doi.org/10.1016/j.supflu.2009.08.002
[63] Z. Knez, S. Kavcic, L. Gubicza, K. Belafi-Bako, G. Nemeth, M. Primozic, M. Habulin, Lipase-catalyzed esterification of lactic acid in supercritical carbon dioxide, J. Supercrit. Fluids, 66 (2012) 192- 197. https://doi.org/10.1016/j.supflu.2011.11.006
[64] K.P. Dhake, K.M. Deshmukh, Y.P. Patil, R.S. Singhal, B.M. Bhanage, Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide, J. Biotechnol. 156 (2011) 46-51. https://doi.org/10.1016/j.jbiotec.2011.08.019
[65] D. Chen, C. Peng, H. Zhang, J. Xu, Y. Yan, Assessment of activities and con-formation of lipases treated with sub- and supercritical carbon dioxide, Appl. Biochem. Biotechnol. 169 (2013) 2189-2201. https://doi.org/10.1007/s12010-013-0132-3
[66] Y. Liu, D. Chen, X. Xu, Y. Yan, Evaluation of structure and hydrolysis activity of Candida rugosa Lip7 in presence of sub-/super-critical CO2, Enzyme Microb. Technol. 51 (2012) 354-358. https://doi.org/10.1016/j.enzmictec.2012.08.003
[67] G. Fernandez-Lorente, Z. Cabrera, C. Godoy, R. Fernandez-Lafuente, J.M. Palomo, J.M. Guisan, Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties, Process Biochem. 43 (2008)1061-1067. https://doi.org/10.1016/j.procbio.2008.05.009
[68] H.R. Hobbs, N.R. Thomas, Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions, Chem. Rev. 107 (2007) 2786-2820. https://doi.org/10.1021/cr0683820
[69] S. Sabeder, M. Habulin, Z. Knez, Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide, Ind. Eng. Chem. Res. 44 (2005) 9631-9635. https://doi.org/10.1021/ie050266k
[70] Z.R. Yu, S.S.H. Rizvi, J.A. Zollweg, Enzymic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide, Biotechnol. Prog. 8 (1992) 508-513. https://doi.org/10.1021/bp00018a006
[71] Z. Knez, M. Habulin, Z. Knez, M. Habulin, Lipase-catalyzed esterification in supercritical carbon dioxide. biocatalysis in non-concentional media. J. Tramper, Elsevier Science Publishers: (1992) 401-407. https://doi.org/10.1016/b978-0-444-89046-7.50061-8
[72] Z. Knez, M, Habulin, Lipase catalysed esterification at high pressure, Biocatal. 9 (1994) 115-121. https://doi.org/10.3109/10242429408992113
[73] Y. Ikushima, N. Saito, M. Arai, H.W. Blanch, Activation of a lipase triggered by interactions with supercritical carbon dioxide in the near-critical region, J. Phys. Chem. 99 (1995) 8941-8944. https://doi.org/10.1021/j100022a001
[74] Y. Ikushima, Supercritical fluids: An interesting medium for chemical and biochemical processes, Adv. Colloid Interface Sci. 71-72 (1997) 259-280. https://doi.org/10.1016/s0001-8686(97)00021-3
[75] N. Mase, T. Sako, Y. Horikawa, K. Takabe, Novel strategic lipase-catalyzed asymmetrization of 1,3-propanediacetate in supercritical carbon dioxide, Tetrahedron Lett. 44 (2003) 5175-5178. https://doi.org/10.1016/s0040-4039(03)01266-8
[76] Y. Ikushima, N. Saito, T. Yokoyama, K. Hatakeda, S. Ito, M. Arai, H.W. Blanch, Solvent effects on an enzymatic ester synthesis in supercritical carbon dioxide, Chem. Lett. 22 (1993) 109-112. https://doi.org/10.1246/cl.1993.109
[77] E. Catoni, E. Cernia, C. Palocci, Different aspects of ‘solvent engineering’ in lipase biocatalysed esterifications, J. Mol. Catal. A: Chem. 105 (1996) 79-86. https://doi.org/10.1016/1381-1169(95)00153-0
[78] M. Rantakyla, M. Alkio, O. Aaltonen, Stereospecific hydrolysis of 3-(4-methoxyphenyl) glycidic ester in supercritical carbon dioxide by immobilized lipase, Biotechnol. Lett. 18 (1996) 1089-1094. https://doi.org/10.1007/bf00129737
[79] Y.B. Tewari, T. Hara, K.W. Phinney, M.P. Mayhew, A thermodynamic study of the lipase-catalyzed transesterification of benzyl alcohol and butyl acetate in supercritical carbon dioxide media, J. Mol. Catal. B: Enzym. 30 (2004) 131-136. https://doi.org/10.1016/j.molcatb.2004.04.005