Green Solvents in Chemical Reactions


Green Solvents in Chemical Reactions

Manviri Rani, Uma Shanker

Due to environmental toxicity, harmful impact and prolonged exposure of traditional solvents on all living organisms, the trend of using green technology in scientific work has been in progress. Reducing the use of solvents or replacing them with less toxic/green ones, are two of the most important ambitions of green chemistry. Water, ionic liquids (imidazolium-based), supercritical fluids, deep eutectic solvents or bio-based solvents, non-toxic liquid polymers and their varied combinations have been extensively used as part of the class of green solvents in organic synthesis. They are characterized by low toxicity, convenient accessibility, and the possibility of reuse as well as great efficiency. Moreover, green organic solvents have been used in analytical extraction and chromatographic separation processes. The use of natural ingredients to synthesize nanomaterials and design environmentally benign synthetic processes has been extensively explored.

Green Solvents, Chemical Reaction, Water, Ionic Liquids, Organic Synthesis, Nanomaterials, Analytical Studies

Published online 5/25/2019, 77 pages

Citation: Manviri Rani, Uma Shanker, Green Solvents in Chemical Reactions, Materials Research Foundations, Vol. 50, pp 165-241, 2019


Part of the book on Industrial Applications of Green Solvents

[1] K. Tanaka, F. Toda, Solvent-Free Organic Synthesis, Chem. Rev. 100 (2000) 1025-1074.
[2] P Anastas, N. Eghbali, Green chemistry: principles and practice. Chem. Soc. Rev. 39 (2010) 301-12
[3] P. Koteswararao, S. L. Tulasi, Y. Pavani, Impact of solvents on environmental pollution. National Seminar on Impact of Toxic Metals, Minerals and Solvents leading to Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences, 3, (2014), 132-135
[4] F.D. Dick, Solvent neurotoxicity. Occup. Environ Med., 63(2006) 221-226
[5] N. Sanni Babu, S. Mutta Reddy, Impact of solvents leading to environmental pollution. National Seminar on Impact of Toxic Metals, Minerals and Solvents leading to Environmental Pollution, Journal of Chemical and Pharmaceutical Sciences, 3, 2014, 49-52
[6] G. Malaguarnera, E. Cataudella, M. Giordano, G. Nunnari, G. Chisari, M. Malaguarnera, Toxic hepatitis in occupational exposure to solvents. World J Gastroenterol. 18(2012) 2756–2766.
[7] R. Lauwerys, A. Bernard, C. Viau, J. P. Buchet, Kidney disorders and hematotoxicity from organic solvent exposure. Scand J Work Environ Health 11(1985) 83-90
[8] T. Welton, Solvents and sustainable chemistry. Proc Math Phys Eng Sci., 471(2015) 20150502 -18
[9] H.C. Hailes, Reaction Solvent Selection:  The Potential of Water as a Solvent for Organic Transformations Org. Process Res. Dev. 11 (2007) 114-120.
[10] C. J. Li, L. Chen, Organic chemistry in water Chem. Soc. Rev. 35 (2006) 68-82.
[11] M.O. Simon, C.J. Li, Green chemistry oriented organic synthesis in water Chem. Soc. Rev. 41 (2012) 1415-1427.
[12] D.C. Rideout, R. Breslow, Hydrophobic acceleration of Diels-Alder reactions J. Am. Chem. Soc. 102 (1980) 7816-7817.
[13] M.A. Hill Bembenic, C.E. Burgess Clifford,Subcritical Water Reactions of a Hardwood Derived Organosolv Lignin with Nitrogen, Hydrogen, Carbon Monoxide, and Carbon Dioxide Gases Energy Fuels 26 (2012) 4540-4549.
[14] M.A. Hill Bembenic, C.E. Burgess Clifford, Subcritical Water Reactions of Lignin-Related Model Compounds with Nitrogen, Hydrogen, Carbon Monoxide, and Carbon Dioxide Gases Energy Fuels 27 (2013) 6681-6694.
[15] M. Mooller, P. Nilges, F. Harnisch, U. Schroder, Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem 4 (2011) 566-579.
[16] S. Avola, F. Goettmann, M. Antonietti, W. Kunz, Organic reactivity of alcohols in superheated aqueous salt solutions: an overview New J. Chem. 36 (2012) 1568-1577.
[17] B. Smutek, W. Kunz, F. Goettmann, C. R.Hydrothermal alkylation of phenols with alcohols in diluted acids, Chimie 15 (2012) 96-101.
[18] J. A. Branch, P. N., Bartlett Electrochemistry in supercritical fluid. Philos Trans A Math Eng Sci,; 373(2015) 20150007-16
[19] S. P. Nalawade, F. Picchioni, L. P. B. M. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progress in polymer science 31(2006) 19-43
[20] M. Herrero, A. Cifuentes, E. Ibanez, Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review Food Chem. 98 (2006) 136-148.
[21] J. H. Clark, S. J. Taverner, Alternative solvents: shades of green. Org. Process Res. Dev., 11 (2007) 149–155.
[22] D. Zhao, Y. Liao, Z. Zhang, Toxicity of Ionic Liquids. Clean 35 (2007) 42-48.
[23] A. Romero, J. Santos, A. Tojo, Rodríguez, Toxicity and biodegradability of imidazolium ionic liquids J. Hazard. Mater. 151 (2008) 268-273.
[24] T.P.T. Pham, C.-W. Cho, Y.-S. Yun, Environmental fate and toxicity of ionic liquids: a review Water Res. 44 (2010) 352-372.
[25] Q. Yang, Y. Zhang, F. Fei, P. Zhou, Y. Wang, P. Deng, Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO2 absorption Green Chem. 17 (2015) 3798-3805.
[26] G. H. Tao, L. He, W.-S. Liu, L. Xu, W. Xiong, T. Wang, Y. Kou,Preparation, characterization and application of amino acid-based green ionic liquids Green Chem. 8 (2006) 639-646.
[27] B. L. Gadilohar, G.S. Shankarling, Choline based ionic liquids and their applications in organic transformation J. Mol. Liq. 227 (2017) 234-261.
[28] Y. Fukaya, Y. Iizuka, K. Sekikawa, H. Ohno, Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials Green Chem. 9 (2007) 1155.
[29] H. Garcia, R. Ferreira, M. Petkovic, J.L. Ferguson, M.C. Leit~ao, H.Q.N. Gunaratne, K.R. Seddon, L.P.N. Rebelo, C. Silva Pereira, Dissolution of cork biopolymers in biocompatible ionic liquids Green Chem. 12 (2010) 367.
[30] M. Zech, S. Kellermeier, E. Thomaier, R. Maurer, C. Klein, W. Schreiner, F. Kunz, Alkali Metal Oligoether Carboxylates—A New Class of Ionic Liquids Chemistry 15 (2009) 1341-1345.
[31] Y. Zhang, B.R. Bakshi, E.S. Demessie, Life Cycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications Environ. Sci. Technol. 42 (2008) 1724-1730.
[32] W. Kunz, K. Hackl,The hype with ionic liquids as solvents Chem. Phys. Lett. 661 (2016) 6-12.
[33] A. P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah,Novel solvent properties of choline chloride/urea mixtures Chem. Commun. (2003) 70-71.
[34] M. Hayyan, Y.P. Mbous, C.Y. Looi, W.F. Wong, A. Hayyan, Z. Salleh, O. Mohd-Ali, Natural deep eutectic solvents: cytotoxic profile SpringerPlus 5 (2016) 913-922.
[35] I. Juneidi, M. Hayyan, M.A. Hashim,Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents RSC Adv. 5 (2015) 83636-83647.
[36] Q. Wen, J.-X. Chen, Y.-L. Tang, J. Wang, Z. Yang,Assessing the toxicity and biodegradability of deep eutectic solvents Chemosphere 132 (2015) 63-69.
[37] V. Fischer, D. Touraud, W. Kunz, Eco-friendly one pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent Sustain. Chem. Pharm. 4 (2016) 40-45.
[38] S. Chandrasekhar, C. Narsihmulu, S.S Sultana, N. R. Reddy, Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the Heck reaction. Org. Lett. 4(2002) 4399–4401.
[39] N. F. Leininger, R. Clontz, J. L. Gainer, D. J. Kirwan, Polyethylene glycol-water and polypropylene glycol-water solutions as benign reaction solvents. Chem. Eng. Commun., 190 (2003) 431–444.
[40] D. J. Heldebrant, H. N. Witt, S. M. Walsh, T. Ellis, J. Rauscher, P.G. Jessop Liquid polymers as solvents for catalytic reductions. Green Chem. 8 (2006) 807–815.
[41] K. Verschueren, Handbook of environmental data on organic chemicals, 4th edition, Wiley, New York, 2001
[42] J. Ulbricht, R. Jordan, R. Luxenhofer, On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials, 35 (2014) 4848 -61
[43] L. Lomba, B. Giner, I. Bandrés, C. Lafuenteb and M. R. Pinoa, Physicochemical properties of green solvents derived from biomass., Green Chem., 13 (2011) 2062-2070.
[44] B. Giner, C. Lafuente, A. Villares, M. Haro and M. C. Lopez,Volumetric and refractive properties of binary mixtures containing 1,4-dioxane and chloroalkanes J. Chem. Thermodyn., 2007, 39, 148–157.
[45] J. A. Riddick, W. B. Bunger, T. Sakano, and A.Weissberger, Organic solvents: physical properties and methods of purification, Wiley, New York, 1986.
[46] K.J. Kim, U. M. Diwekar, Efficient combinatorial optimization under uncertainty. Part II. Application to stochastic solvent selection. Ind Eng Chem Res 41 (2002) 1285–1296
[47] L. Chao-Jun and B. M. Trost, Green chemistry for chemical synthesis PNAS, 105 (2008) 13197-13202.
[48] C. Reichardt, Solvents and Solvent Effects:  An Introduction, Org. Process Res. Dev., 11 (2007) 105–113.
[49] W. C. Berkeley, J. Zhang, Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev., 2(2009) 193-211
[50] V. I. Parvulescu, C. Hardacre, Catalysis in ionic liquids. Chem. Rev., 107(2007) 2615–2665
[51] T. Agata, Green solvents. J. Edu., Health and Sport.;7(2017) 224-232
[52] K. Hackl, W. Kunz* Some aspects of green solvents C. R. Chimie, 21 (2018) 572-580.
[53] K. Shanab, C. Neudorfer, E. Schirmer, H. Spreitze, Current Organic Green Solvents in Organic Synthesis: An Overview Chemistry, 17 (2013)1179-1187.
[54] Y. Gu, Multicomponent reactions in unconventional solvents: state of the art. Green Chem., 14 (2012) 2091-2128.
[55] M. Tobiszewsk, J. Namiesnik, Greener organic solvents in analytical chemistry.Curr. Opi Green Sust Chem 5 (2017)1–4
[56] Z. Li, Z. Jia, Y. Luan, Tiancheng, Mud Ionic liquids for synthesis of inorganic nanomaterials , Curr Opin Solid St M 12 (2008) 1–8.
[57] Y. Lu, S. Ozcan, Green nanomaterials: On track for a sustainable future, Nano Today 10 (2015) 417—420
[58] R. A. Sheldon, Green solvents for sustainable organic synthesis: state of the art Green Chem., 7 (2005) 267-268
[59] H. Duan, D. Wang and Y. Li, Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 44 (2015) 5778-5792
[60] J. M. DeSimone, Practical approaches to green solvents, Science, 297(2002) 799–803.
[61] P.G. Jessop, Searching for green solvents Green Chem. 13 (2011) 1391.
[62] B. Cornils and E. Wiebus, Paradigms in Green Chemistry and Technology Recl. Trav. Chim. Pays-Bas, 115 (1996) 211–215.
[63] E.G. Kuntz, Fr. Patent 2314910 (1975).
[64] F. Joo, Z. Toth, Catalysis by water-soluble phosphine complexes of transition metal ions in aqueous and two-phase media. J. Mol. Catal., 8 (1980) 369-383
[65] S. Takashi, J. Dakka, R.A. Sheldon, Titanium-substituted zeolite beta(Ti- l-)-catalysed epoxidation of oct-1-ene with tert-butyl hydroperoxide( TBHP). J. Chem. Soc., Chem. Commun., 8 (1994) 1887-1888.
[66] L. M. Papadogianakis, R. A. Sheldon, Catalytic conversions in water. Part 5: Carbonylation of 1-(4-iso-butylphenyl) ethanol to ibuprofen catalyzed by water- soluble palladium-phosphine complexes in a two-phase system. J. Chem. Technol. Biotechnol., 70 (1997) 83-91.
[67] G. J. Ten Brink, I. W. Arends, Sheldon, R.A. Green, catalytic oxidation of alcohols in water. Science, 287(2000) 1636-1639
[68] M. A. Wegman, H. A. Janssen, F. van Rantwijk, R.A. Sheldon, Towards biocatalytic synthesis of β-lactam antibiotics. Adv. Synth. Catal., 343 (2001) 559-576
[69] K. Oyama, In: Chirality in Industry; Collins, Sheldrake, Crosby, Eds.; Wile & Sons: NY, (1992) pp. 237-248.
[70] J. E. Gavagan, S. K. Fager, J. E. Seip, M. S. Payne, D. L. Anton, R. DiCosimo, Glyoxylic Acid Production Using Microbial Transformant Catalysts. J. Org. Chem., 60 (1995) 3957-3963
[71] Y. F. Han and M. Xia, Multicomponent Synthesis of Cyclic Frameworks on Knoevenagel-Initiated Domino Reactions Curr. Org. Chem., 14 (2010) 379–413
[72] B. Jiang and S.-J. Tu, Chimia, Active Methylene-based Multicomponent Reactions under Microwave Heating 65 (2011) 925–931.
[73] Y. Gu, R. De Sousa, G. Frapper, C. Bachmann, J. Barrault and F. Jérôme, Catalyst-free aqueous multicomponent domino reactions from formaldehyde and 1,3-dicarbonyl derivatives Green Chem., 11 (2009) 1968–1972
[74] M. Li, C. Tang, J. Yang and Y. Gu,Ring-opening reactions of 2-aryl-3, 4-dihydropyrans with nucleophiles Chem. Commun., 47 (2011) 4529–4531;
[75] M. Li, H. Li and Y. Gu, Ring-Opening Reactions of 2-Alkoxy-3,4-dihydropyrans with Thiols or Thiophenols Org. Lett., 13 (2011) 1064–1067
[76] M. Li, J. Yang and Y. Gu, Manganese Chloride as an Efficient Catalyst for Selective Transformations of Indoles in the Presence of a Keto Carbonyl Group Adv. Synth. Catal., 353 (2011)1551–1564;
[77] M. Li and Y. Gu, 2-Aryl-3,4-dihydropyrans as building blocks for organic synthesis: ring-opening reactions with nucleophiles Tetrahedron, 67 (2011) 8314–8320
[78] G. Frapper, C. Bachmann, Y. Gu, R. C. De Sousa and F. Jérôme, Mechanisms of the Knoevenagel hetero Diels–Alder sequence in multicomponent reactions to dihydropyrans: experimental and theoretical investigations into the role of water, Phys. Chem. Chem. Phys., 13 (2011) 628–636
[79] Kumar, A.; Maurya, R. A.‘An unusual Mannich type reaction of tertiary aromatic amines in aqueous micelles’. Tetrahedron Lett., 49 (2008) 5471-5481
[80] L. Li, B. Liu, and X. Lin, Catalyst‐free Multicomponent Synthesis of β‐Mercapto Diketones in Water Chin. J. Chem., 29(2011) 1856–1862.
[81] A. Solhy, E. Tahir, A. R. Karkouri, M. Larzek, M. Bousmina, M. Zahouily, Clean chemical synthesis of 2-aminochromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7 Green’. Chem., 12 (2010) 2261.
[82] X. Liu, J. Ma, W. Zhang, Applications of ionic liquids (ILs) in the convenient synthesis of nanomaterials, Rev. Adv. Mater. Sci. 27 (2011) 43–51.
[83] K. Ablajan and H. Xiamuxi, Efficient One-Pot Synthesis of β-Unsaturated Isoxazol-5-ones and Pyrazol-5-ones Under Ultrasonic Irradiation, Synth. Commun., 42 (2012) 1128–1136
[84] Q. Liu and R.-T. Wu, Facile synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones catalysed by sodium silicate in an aqueous medium J. Chem. Res., 35 (2011) 35, 598–599.
[85] K. Kumaravel, G. Vasuki, ‘Multi-Component Reactions in Water’.Curr. Org. Chem. 13 (2009) 1820-1825.
[86] P. Gunasekaran, S. Perumal, P. Yogeeswari and D. Sriram, A facile four-component sequential protocol in the expedient synthesis of novel 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolones in water and their antitubercular evaluation. Eur. J. Med. Chem., 46 (2011) 4530–4536.
[87] P. V. Shinde, S. S. Sonar, B. B. Shingate and M. S. Shingare, Boric acid catalyzed convenient synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines in aqueous media Tetrahedron Lett., 51 (2010) 1309–1312.
[88] P. V. Shinde, B. B. Shingate and M. S. Shingare, Aqueous Suspension of Basic Alumina: An Efficient Catalytic System for the Synthesis of Poly Functionalized Pyridines Bull. Korean Chem. Soc., 32 (2011) 459–462.
[89] Z. Q. Wang, Z.-M. Ge, T.-M. Cheng and R.-T. Li, Synthesis of Highly Substituted Pyridines via a One-Pot, Three-Component Cascade Reaction of Malononitrile with Aldehydes and S-Alkylisothiouronium Salts in Water Synlett, 22 (2009) 2020–2022.
[90] Y. Zhou, J. Wang, R. Du, G. Zhang, W. Wang and C. Guo, Microwave-Assisted One-Pot Synthesis of 3-Amino-1-aryl-8-bromo-2,4-dicyano-9H-fluorenes in Water Synth. Commun., 2011, 41, 3169–3176
[91] C. Mukhopadhyay and S. Ray, Synthesis of 2-amino-5-alkylidenethiazol-4-ones from ketones, rhodanine, and amines with the aid of re-usable heterogeneous silica-pyridine based catalyst Tetrahedron Lett., 67 (2011) 7936–7945.
[92] G.P. Lu, L.Y. Zeng and C. Cai, An efficient synthesis of dihydrothiophene ureidoformamides by domino reactions of 1,3-thiazolidinedione under catalyst-free conditions Green Chem., 13 (2011) 998–1003
[93] M. Hadjebi, M. S. Hashtroudi, H. R. Bijanzadeh and S. Balalaie, Novel Four‐Component Approach for the Synthesis of Polyfunctionalized 1,4‐Dihydropyridines in Aqueous Media Helv. Chim. Acta, 94 (2011) 382–388.
[94] S. M. Rajesh, B. D. Bala, S. Perumal and J. C. Menéndez, L-Proline-catalysed sequential four-component “on water” protocol for the synthesis of structurally complex heterocyclic ortho-quinones Green Chem., 13 (2011) 3248–3254.
[95] Y. Zou, H. Wu, Y. Hu, H. Liu, X. Zhao, H. Ji and D. Shi, A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation Ultrason. Sonochem., 18 (2011) 708–712
[96] S. J. Chai, Y. F. Lai, J. C. Xu, H. Zheng, Q. Zhu and P. F. Zhang, One‐Pot Synthesis of Spirooxindole Derivatives Catalyzed by Lipase in the Presence of Water Adv. Synth. Catal., 353 (2011) 371–375.
[97] L. M. Wang, N. Jiao, J. Qiu, J. J. Yu, J. Q. Liu, F. L. Guo and Y. Liu, Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media Tetrahedron, 66(2010) 339–343.
[98] Y. Li, H. Chen, C. Shi, D. Shi and S. Ji, Efficient One-Pot Synthesis of Spirooxindole Derivatives Catalyzed by l-Proline in Aqueous Medium J. Comb. Chem., 12 (2010) 231–237.
[99] R. Ghahremanzadeh, T. Amanpour and A. Bazgir, Clean synthesis of spiro[indole‐3,8′‐phenaleno[1,2‐b]pyran]‐9′‐carbonitriles and spiro[indole‐3,4′‐pyrano[4,3‐b]pyran]‐3′‐carbonitriles by one‐pot, three‐component reactions J. Heterocycl. Chem., 47 (2010) 46–49.
[100] V. Dandia, A. K. Jain and K. S. Rathore, Step-economic, efficient, ZnS nanoparticle-catalyzed synthesis of spirooxindole derivatives in aqueous medium via Knoevenagel condensation followed by Michael addition Green Chem., 13 (2011) 2135–2145.
[101] M. Rimaz and J. Khalafy, ARKIVOC, A novel one-pot, three-component synthesis of alkyl 6-aryl-3-methylpyridazine-4-carboxylates in water, ARKIVOC, 11 (2010) 110–117.
[102] M. Wang, T. T. Zhang, Y. Liang and J. J. Gao, Strontium chloride-catalyzed one-pot synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in protic media Chin. Chem. Lett., 22(2011) 1423–1426.
[103] Z. H. Zhang, H. Y. Lü, S. H. Yang and J. W. Gao, Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones by Three-Component Coupling of Isatoic Anhydride, Amines, and Aldehydes Catalyzed by Magnetic Fe3O4 Nanoparticles in Water J. Comb. Chem., 12 (2010) 643–646.
[104] M. Narasimhulu and Y. R. Lee, Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and their spirooxindole derivatives Tetrahedron, 67 (2011) 9627–9634.
[105] J. M. Khurana and S. Kumar, An efficient, catalyst free synthesis of 3-(2′’-benzothiazolyl)-2,3-dihydroquinazolin-4(1H)-ones in aqueous medium Green Chem. Lett. Rev., 4 (2011) 321– 325.
[106] A. Alizadeh and N. Zohreh, A unique approach to catalyst-free, one-pot synthesis of spirooxindole-pyrazolines Synlett, 23 (2012) 428–432.
[107] F. Cruz-Acosta, P. de Armas and F. García-Tellado, A Metal-Free, Three-Component Manifold for the C2-Functionalization of 1-Substituted Imidazoles Operating ‘On Water Synlett, 16 (2010) 2421– 2424.
[108] K. Tanaka and R. Shiraishi, Clean and efficient condensation reactions of aldehydes and amines in a water suspension medium Green Chem., 2 (2000) 272–273.
[109] N. Azizi and A. Davoudpour, Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly Acids Org. Lett., 141 (2011) 1506–1510.
[110] G. Li, H. Wu, Z. Wang and X. Wang, One-pot three-component Mannich-type reaction catalyzed by trifluoromethanesulfonic acid in water, Kinet. Catal., 52 (2011) 89–93.
[111] G. Zhang, Z. Huang and J. Zou, Ga(OTf)3‐catalyzed Three‐component Mannich Reaction in Water Promoted by Ultrasound Irradiation, Chin. J. Chem., 27 (2009) 1967–1974
[112] H. Wu, X.-M. Chen, Y. Wan, L. Ye, H.-Q. Xin, H.-H. Xu, C.-H. Yue, L.-L. Pang, R. Ma and D.-Q. Shi, Stereoselective Mannich reactions catalyzed by Tröger’s base derivatives in aqueous media Tetrahedron Lett., 50 (2009) 1062–1065.
[113] X.-S. Wang, J. Zhou, K. Yang and Q. Li, Facile and Green Method for the Synthesis of β-Aminoketone Derivatives in Aqueous Media, Synth. Commun., 40 (2010) 964–972.
[114] D. Hong, Y.-Y. Yang, Y.-G. Wang and X.-F. Lin, A Yb (OTf)3/PEG-supported quaternary ammonium salt catalyst system for a three-component Mannich-type reaction in aqueous media, Synlett, 7 (2009) 1107– 1110.
[115] Z. Xie, G. Li, G. Zhao and J. Wang, Three‐component Synthesis of Homoallylic Amines Catalyzed by Phosphomolybdic Acid in Water Chin. J. Chem., 27 (2009) 925– 929.
[116] Y. Yuan, F. Chen and D. Zhao, Iron‐catalyzed efficient three‐component allylation of imine in aqueous media Appl. Organomet. Chem., 23(2009) 485–491.
[117] K. Ando and T. Egami, Facile synthesis of α‐amino phosphonates in water by Kabachnik–Fields reaction using magnesium dodecyl sulfate Heteroat. Chem., 22(2011) 358–362.
[118] B. Karmakar and J. Banerji, K2PdCl4 catalyzed efficient multicomponent synthesis of α-aminonitriles in aqueous mediaTetrahedron Lett., 51 (2010) 2748–2750.
[119] D. Fang, C. Jiao and C. Ni, SO3H‐functionalized ionic liquids catalyzed the synthesis of α‐aminophosphonates in aqueous media Heteroat. Chem., 21(2010) 546–550
[120] S. Sobhani and A. Vafaee Micellar solution of sodium dodecyl sulfate (SDS) catalyzes Kabacknik-Fields reaction in aqueous media, Synthesis, 11 (2009) 1909–1915
[121] M. N. Sefat, D. Saberi and K. Niknam, Preparation of silica-based ionic liquid an efficient and recyclable catalyst for one-pot synthesis of α-aminonitriles Catal. Lett., 141 (2011) 1713– 1720.
[122] G. Brahmachari and S. Das, Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature Tetrahedron Lett., 53(2012) 1479–1484
[123] B. Das, D. B. Shinde, B. S. Kanth and G. Satyalakshmi, An efficient multicomponent synthesis of polysubstituted pyrrolidines and tetrahydropyrimidines starting directly from nitro compounds in water Synthesis, 16 (2010) 2823–2827.
[124] F. García-Tellado, F. Cruz-Acosta, A. Santos-Expósito, P. de Armas, Lewis base-catalyzed three-component Strecker reaction on water. An efficient manifold for the direct α-cyanoamination of ketones and aldehydes Chem. Commun., 0(2009) 6839–6841.
[125] P. Galletti, M. Pori and D. Giacomini, Catalyst‐Free Strecker Reaction in Water: A Simple and Efficient Protocol Using Acetone Cyanohydrin as Cyanide Source Eur. J. Org. Chem.,11(2011) 3896–3903.
[126] B. P. Mathew and M. Nath, ne‐pot three‐component synthesis of dihydrobenzo‐ and naphtho[e]‐1,3‐oxazines in water J. Heterocycl. Chem., 46 (2009) 1003–1006.
[127] A. Sartori, L. Dell’Amico, C. Curti, L. Battistini, G. Pelosi, G. Rassu, G. Casiraghi and F. Zanardi, Aqueous and Solvent‐Free Uncatalyzed Three‐Component Vinylogous Mukaiyama–Mannich Reactions of Pyrrole‐Based Silyl Dienolates Adv. Synth. Catal., 353 (2011) 3278–3284.
[128] D.N. Zhang, J.-T. Li, Y.-L. Song, H.-M. Liu and H.-Y. Li, Efficient one-pot three-component synthesis of N-(4-arylthiazol-2-yl) hydrazones in water under ultrasound irradiation. Ultrason. Sonochem., 19 (2012) 475–478.
[129] Z. Halimehjani, K. Marjani and A. Ashouri, Synthesis of dithiocarbamate by Markovnikov addition reaction in aqueous medium Green Chem., 12 (2010) 1306–1310.
[130] B. Karmakar and J. Banerji, K2PdCl4 catalyzed efficient multicomponent synthesis of α‐aminonitriles in aqueous media. Tetrahedron Lett., 51 (2010) 2748–2750
[131] B. C. Ranu, T. ChatterjeeandS. Bhadra Transition metal-free procedure for the synthesis of S-aryl dithiocarbamates using aryl diazonium fluoroborate in water at room temperature Green Chem., 13 (2011) 1837–1842.
[132] S. Santra and P. R. Andreana, A Bioinspired Ugi/Michael/Aza‐Michael Cascade Reaction in Aqueous Media: Natural‐Product‐like Molecular Diversity Angew. Chem., Int. Ed., 50 (2011) 9418–9422.
[133] A. Shaabani, A. Sarvary, S. Ghasemi, A. H. Rezayan, R. Ghadari and S. W. Ng, Green Chem., An environmentally benign approach for the synthesis of bifunctional sulfonamide-amide compounds viaisocyanide-based multicomponent reactions 13 (2011) 582–585.
[134] A. Ramazani, A. Rezaei, A. T. Mahyari, M. Rouhani and M. Khoobi, Three‐Component Reaction of an Isocyanide and a Dialkyl Acetylenedicarboxylate with a Phenacyl Halide in the Presence of Water: An Efficient Method for the One‐Pot Synthesis of γ‐Iminolactone Derivatives Helv. Chim. Acta, 93 (2010) 2033–2036.
[135] R. Sarma, M. M. Sarmah, K. C. Lekhok and D. Prajapati, organic reactions in water: an efficient synthesis of pyranocoumarin derivatives Synlett, 12 (2010) 2847–2852.
[136] X. Zhu, X.-P. Xu, C. Sun, H.-Y. Wang, K. Zhao and S.-J. Ji, J. Comb. Direct construction of imino-pyrrolidine-thione scaffold via isocyanide-based Multicomponent reaction Chem., 12 (2010) 822–828.
[137] S. Pirrung, O. Kreye, and M. A. R. Ansgar, Tunable Polymers Obtained from Passerini Multicomponent Reaction Derived Acrylate Monomers Macromolecules 46 (2013) 6031-6037
[138] F. Marinelli, Cu-Mediated Organic Transformations in Water Curr. Org. Synth., 9 (2012) 2–16.
[139] J. Le Bras and J. Muzart, From Metal-Catalyzed Reactions with Hydrosoluble Ligands to Reactions in and on Water Curr. Org. Synth., 8 (2011) 330–334
[140] W. Wang, J. Wu, C. Xia and F. Li, Reusable ammonium salt-tagged NHC–Cu (I) complexes: preparation and catalytic application in the three component click reaction Green Chem.,13 (2011) 3440–3445
[141] M. Liu and O. Reiser, A copper (I) isonitrile complex as a heterogeneous catalyst for azide− alkyne cycloaddition in water Org. Lett., 13 (2011) 1102–1105.
[142] Y. Wang, J. Liu and C. Xia, Insights into supported copper(II)-catalyzed azide– alkyne cycloaddition in wate Adv. Synth. Catal., 353 (2011) 1534–1542
[143] R. B. Nasir Baig and R. S. Varma, A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1, 3-dipolar cycloadditions Green Chem., 14 (2012) 625–632
[144] F. Alonso, Y. Moglie, G. Radivoy and M. Yus, Multicomponent Synthesis of 1, 2, 3‐Triazoles in Water Catalyzed by Copper Nanoparticles on Activated Carbon Adv. Synth. Catal., 352 (2010) 3208–3214.
[145] M. Lei, W.-Z. Song, Z.-J. Zhan, S.-L. Cui and F.-R. Zhong, Multicomponent Reactions Stereo- and Regioselective Three-Component Reaction in Water: Synthesis of Triazole Substituted β-Lactams Via Click Chemistry Org. Chem. Lett., 8 (2011) 163–169.
[146] M. Dabiri, P. Salehi, M. Bahramnejad, F. Sherafat and M. Bararjanian, Facile and highly efficient procedure for the synthesis of triazolyl methoxyphenyl 1, 8-dioxo-decahydroacridines via one-pot, pseudo-five-component reaction Synth. Commun., 42 (2012) 3117-3127,
[147] S. R. Adapa, E., Ramu, R., Varala, N. Sreelatha, Zn(OAc)2·2H2O: a versatile catalyst for the onepot synthesis of propargylamines. Tetrahedron Lett., 48(2007). 7184-7190.
[148] D. Kumar, G. Patel and V. B. Reddy, Greener and expeditious synthesis of 1, 4-disubstituted 1, 2, 3-triazoles from terminal acetylenes and in situ generated α-azido ketones Synlett, 13 (2009) 399–402.
[149] I. T. Horvath and J. Rabai, Facile catalyst separation without water: fluorous biphase hydroformylation of olefins Science, 266 (1994) 72–75
[150] I. T. Horva´ th, Fluorous biphase chemistry Acc. Chem. Res., 31(1998) 641–650.
[151] J. A. Gladysz, D. P. Curran and I. T. Horvath, Wiley VCH, Handbook of Fluorous Chemistry, ed. Weinheim, 2004
[152] Orha, L.; Akien, G. R.; Horvath, I. T. In: Handbook of Green Chemistry; Wiley: 2012; Vol 7, pp. 93-120
[153] Carreira, M.; Contel, M. In: Fluorous Chemistry; Horváth, Ed.; Springer Berlin: Berlin, Heidelberg, 2012; Vol. 308, pp. 247-274.
[154] Yi, W.-B.; Cai, C.; Wang, X. A novel ytterbium/perfluoroalkylated-pyridine catalyst for Baylis-Hillman reactions in a fluorous biphasic system. J. Fluorine Chem., 128 (2007) 919-924.
[155] Yi, W.-B.; Cai, C.; Wang, X. Mannich-type reactions of aromatic aldehydes, anilines, and methyl ketones in fluorous biphase systems created by rare earth(III) perfluorooctanesulfonate catalysts in fluorous media. J. Fluorine Chem., 127 (2006) 1515-1521
[156] A. P. Dobbs, M. R. Kimberley, Fluorous phase chemistry: a new industrial technology. J. Fluorine Chem., 118 (2002) 3-17.
[157] A. Heydari, S. Khaksar, M. Tajbakhsh, Trifluoroethanol as a metal-free, homogeneous and recyclable medium for the efficient one-pot synthesis o α-amino nitriles and α-amino phosphonates. Tetrahedron Lett., 50 (2009) 77-80.
[158] A. Aghmiz, C. Claver, A. M. Masdeu-Bultó, D. Maillard, D. Sinou, Hydroformylation of 1-octene with rhodium catalysts in fluorous systems. J. Mol. Catal. A: Chem., 208 (2004) 97-101.
[159] A. Caballero, P. J. Perez, M.A. Fuentes, M. Etienne, B. K. Munoz, Abstracts of Papers, 244th ACS National Meeting & Exposition: Philadelphia, PA, United States, August 19-23, 2012 , pp. INOR-464
[160] K. P. Johnston and P. S. Shah, Materials science. Making nanoscale materials with supercritical fluids. Science, 303 (2004) 482–483.
[161] P. Pollet, E. A. Davey, E. E. Uren˜a-Benavides, C. A. Eckert and C. L. Liotta, Solvents for sustainable chemical processes Green Chem., 16 (2014) 1034-1039
[162] T. Adschiri, Y.-W. Lee, M. Goto and S. Takami, Green materials synthesis with supercritical water Green Chem., 13 (2011) 1380-1386.
[163] K. Sue, T. Adschiri and K. Arai, Predictive Model for Equilibrium Constants of Aqueous Inorganic Species at Subcritical and Supercritical Conditions Ind. Eng. Chem. Res.,41 (2002) 3298–3306.
[164] R. Sui and P. Charpentier, Synthesis of Metal Oxide Nanostructures by Direct Sol–Gel Chemistry in Supercritical Fluids Chem. Rev., 112 (2012) 3057–3082
[165] R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun and J. J. Watkins, Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science, 303 (2004) 507–510.
[166] Ren, W.; Rutz, B.; Scurto, A. M. High-pressure phase equilibrium for the hydroformylation of 1-octene to nonanal in compressed CO2. J. of Supercritical Fluids, 51 (2009) 142-147.
[167] A. C. J. Koeken, M. C. A. van Vliet, L. J. P. van den Broeke, B. J. Deelman, J. T. F. Keurentjes, Selectivity of rhodium-catalyzed hydroformylation of 1-octene during batch and semi-batch reaction using trifluoromethyl substituted ligands. Adv. Synth. Catal., 350 (2008) 179-188.
[168] A. C. Frisch,; Webb, P. B.; Zhao, G.; Muldoon, M. J.; Pogorzelec, P. J.; Cole-Hamilton, D. J. Emerging Strategies in Catalysis. Dalton Trans., 18 (2007) 5531-5538.
[169] B. Schäffner, J. Holz, S. P. Verevkin, A. Börner, Rhodium-catalyzed asymmetric hydrogenation with self-assembling catalysts in propylene carbonate. Tetrahedron Lett., 49(2008) 768-771.
[170] C. Li, B.M. Trost, Green chemistry for chemical synthesis. PNAS, 2008, 105, 13197-13202.
[171] CI Melo, R. Bogel-Kukasik, M. Gomes da Silva, E. Bogel-ukasik, Advantageous heterogeneously catalysed hydrogenation of carvone with supercritical carbon dioxide. Green Chem., 13 (2011) 2825-2830
[172] S. D. Endalkachew, G. D. Venu, A. H. Ashraf, Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on H2- Zeolite Catalyst. Catalysts, 2(2012) 85-100
[173] Y. Chen, Y. Wu, Y. Zhang, L. Long, L. Tao, M. Yang, M. Tang, Epoxidation of propylene to propylene oxide catalyzed by large-grain TS-1 in supercritical CO2, J. Mol. Catal A: Chem, 352 (2012) 102-109
[174] H. F. Jiang, Q.X. Xu and A.Z. Wang, Stereoselective synthesis of tetrasubstituted olefins via palladium-catalyzed three-component coupling of aryl iodides, internal alkynes, and arylboronic acids in supercritical carbon dioxide J. Supercrit. Fluids, 49 (2009) 377–384
[175] F. Haviv, J.D. Ratajczyk, R.W. DeNet, F A Kerdesky, R L Walters, S.P Schmidt, J.H. Holms, P R Young, GW Carter, 3-[I-(2-Benzoxazolyl) hydrazinolpropanenitrile Derivatives: Inhibitors of Immune Complex Induced Inflammation. J. Med. Chem., 31 31(1988) 1719-1728.
[176] K. Tsuji, H. Ishikawa, Synthesis and anti-pseudomonal activity of new 2- isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett., 4 (1994) 1601-1606.
[177] F W. Bell, A.S. Cantrell, et al., . Phenethylthiazolethiourea (PEW) Compounds, a New Class of HIV- 1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PEW Analogs. J. Med. Chem., 38 (1995) 4929-4936.
[178] H. Zang, M. Wang. B.W. Cheng, J. Song, Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm]OH. Ultrasonics Sonochem., 16 (2009) 301-303.
[179] X. Yannai, S. Ge, G. Rennert, N. Gruener, F.A. Fares, 3,3′- Diindolylmethane induces apoptosis in human cancer cells. Biochem. Biophys. Res. Comm., 228 (1996) 153-158
[180] X. H. Yuan, M. Chen, Q.X. Dai, X. N. Cheng, Friedel-Crafts acylation of anthracene with oxalyl chloride catalyzed by ionic liquid of [bmim]Cl/AlCl3. Chem. Eng. J., 146 (2009) 266-269
[181] H. G. Bonacorso, A. P. Wentz, et al., Trifluoromethyl-containing pyrazolinyl (p-tolyl) sulfones: The synthesis and structure of promising antimicrobial agents. J. Fluorine. Chem., 127 (2006) 1066-1072
[182] K. Gong, D. Fang, H.L. Wang, et al., The one-pot synthesis of 14 alkyl- or aryl-14H-dibenzo[a,j]xanthenes catalyzed by taskspecific ionic liquid. Dyes Pigments, 80 (2009) 80, 30-33.
[183] K. Jadidi, R. Ghahremanzadeh, D. Asgari, P. Eslami, H. Arvin-Nezhad, Eco-friendly synthesis of 1,4-benzodiazepine-2,5-diones in the ionic liquid [bmim]Br. Monatsh. Chem., 139 (2008) 1229-1232.
[184] D. N. Moreira, C.P. Frizzo, K. Longhi, N. Zanatta, H. G. Bonacorso, M. A. P. Martins, An efficient synthesis of 1-cyanoacetyl-5-halomethyl-4,5- dihydro-1H-pyrazoles in ionic liquid. Monatsh. Chem., 139 (2008) 1049-1054.
[185] H. Wakamatsu, Y. Saito, M. Masabuchi, R. Fujita, Synthesis of Imidazolium- Tagged Ruthenium Carbene Complex: Remarkable Activity and Reusability in Regard to Olefin Metathesis in Ionic Liquids. Synlett, 12 (2008) 1805-1808.
[186] S Kumar; J. S. Sandhu, Knoevenagel reaction: alum-mediated efficient green condensation of active methylene compounds with arylaldehydes. Green Chem. Lett. Rev., 2 (2009) 189-192.
[187] S. Kumar, J. S. Sandhu, An efficient green protocol for the production of 1,8-dioxo-octahydroxanthenes in triethylammonium acetate (TEAA), a recyclable inexpensive ionic liquid. J. Chem., 2, (2009) 937-940.
[188] S. Kumar, J. S. Sandhu Bismuth (III) chloride-mediated, efficient, solvent-free, MWI-enhanced Doebner condensation for the synthesis of (E)- cinnamic acids. Synth. Commun., 40 (2010) 1915-1919.
[189] Y. Zhang, C. Xia, Magnetic hydroxyapatite-encapsulated α- Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation. Appl. Cata. A: Gen., 366 (2009) 141-147.
[190] W. J. Wang, W.P. Cheng, L.L. Shao, C.H. Liu, J. G. Yang, Henry and Knoevenagel reactions catalyzed by methoxyl propylamine acetate ionic liquid. Kinet. Cata., 50 (2009) 186-191.
[191] C. Carrignon, P. Makowski, M. Antonietti, F. Goettmann, Chloride ion pairs as catalysts for the alkylation of aldehydes and ketones with C-H acidic compounds. Tetrahedron Lett., 50 (2009) 4833-4837.
[192] L.D.S. Yadav, S. Singha, V. K. Rai, A one-pot [Bmim]OH-mediated synthesis of 3-benzamidocoumarins. Tetrahedron Lett., 50 (2009) 2208-2212.
[193] Z. Zhou, J. Yuan, R. Yang Efficient Knoevenagel condensation catalyzed by 2-hydroxyethylammonium acetate under solvent-free conditions at room temperature Synth. Commun., 39 (2009) 2001-2007.
[194] D. Jiang, Y. Y. Wang, Y. N. Xu, L. Y. Dai, Doebner condensation in ionic liquids [Bmim]BF4 and [Bpy]BF4 to synthesize α,β-unsaturated carboxylic acid. Chin. Chem. Lett., 20 (2009) 279-282.
[195] B. Ni, Q. Zhang, K. Dhungana, A. D. Headley, Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide, a Recyclable Organocatalyst for the highly enantioselective Michael Addition to Nitroolefins. Org. Lett., 11 (2009) 1037-1040.
[196] P. Singh, K. Kumari, A. Katyal, R Kalra, R. Chandra Copper Nanoparticles in Ionic Liquid: An Easy and Efficient Catalyst for Selective Carba- Michael Addition Reaction. Catal. Lett., 127 (2009) 119-125.
[197] M. A. Kolosov, V. D. Orlov, D.A. Beloborodov, V. V. Dotsenko, A chemical placebo. NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 13 (2009) 5-25.
[198] A. Suresh, A. Saini D. Kumar, J. S. Sandhu, Multicomponent eco-friendly synthesis of 3,4-dihydropyrimidine-2-(1H)-ones using an organocatalyst Lactic acid. Green Chem. Lett. Rev., 2, (2009) 29-33.
[199] S. S. Chavan, Y. O. Sharma, M. S. Degani, Cost-effective ionic liquid for environmentally friendly synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Green Chem. Lett. Rev., 2, (2009) 175-179.
[200] S. Kumar, J. S. Sandhu, New efficient protocol for the production of Hantzsch 1,4-dihydropyridines using RuCl3. Synth. Commun., 39 (2009) 1957-1965.
[201] J. S. Sandhu, Recent advances in ionic liquids. Green unconventional solvents of this century. Part II. Green Chem. Lett. Rev., 4, (2011) 311-320.
[202] M. R. P. Heravi and F. Fakhr, Ultrasound-promoted synthesis of 2-amino-6-(arylthio)-4-arylpyridine-3,5-dicarbonitriles using ZrOCl2·8H2O/NaNH2 as the catalyst in the ionic liquid [bmim]BF4 at room temperature Tetrahedron Lett., 52 (2011) 6779–6782.
[203] A. K. Gupta, K. Kumari, N. Singh, D. S. Raghuvanshi and K. N. Singh, An eco-safe approach to benzopyranopyrimidines and 4H-chromenes in ionic liquid at room temperature Tetrahedron Lett., 53, (2012) 650–653
[204] G. Gupta, A. Kumar, S. Srivastava, Functional ionic liquid mediated synthesis (FILMS) of dihydrothiophenes and tacrine derivatives Green Chem., 13 (2011) 2459– 2463.
[205] V. K. Rao, B. S. Chhikara, R. Tiwari, A. N. Shirazi, K. Parang and A. Kumar, One-pot regioselective synthesis of tetrahydroindazolones and evaluation of their antiproliferative and Src kinase inhibitory activities Bioorg. Med. Chem. Lett., 22 (2012) 410–414.
[206] A. Kumar, M. S. Rao, I. Ahmad and B. Khungar, An Efficient and Simple One-Pot Synthesis of β-Acetamido Ketones Catalyzed by Ytterbium Triflate in Ionic Liquid Aust. J. Chem., 62 (2009) 322–327.
[207] S. S. Chavan, M. S. Degani, ‘Ionic liquid mediated one-pot synthesis of 6-aminouracils’.Green Chem., 14(2012) 296-302.
[208] A. Hasaninejad, A. Zare, M. Shekouhy and J. Ameri Rad, Catalyst-Free One-Pot Four Component Synthesis of Polysubstituted Imidazoles in Neutral Ionic Liquid 1-Butyl-3-methylimidazolium Bromide J. Comb. Chem., 12, (2010) 844–849.
[209] Z. Xiao, M. Lei and L. Hu, An unexpected multi-component reaction to synthesis of 3-(5-amino-3-methyl-1H-pyrazol-4-yl)-3-arylpropanoic acids in ionic liquid Tetrahedron Lett., 52 (2011) 7099–7102.
[210] X. Zhang, X. Li, X. Fan, X. Wang, D. Li, G. Qu, J. Wang, Ionic liquid promoted preparation of 4H-thiopyran and pyrimidine nucleoside-thiopyran hybrids through one-pot multi-component reaction of thioamide’. Mol. Diversity., 13 (2009) 57-62.
[211] D. Q. Shi and F. Yang, An efficient synthesis of pyrazolo [3,4-b]quinolin-5(6H)-one derivatives in ionic liquids J. Heterocycl. Chem., 48(2011) 308–311
[212] S. Ramesh and R. Nagarajan, Efficient One-Pot Multicomponent Synthesis of (Carbazolylamino)furan-2(5H)-one and Carbazolyltetrahydropyrimidine Derivatives Synthesis, 7 (2011) 3307–3317.
[213] K. Rad-Moghadam and L. Youseftabar-Miri, Ambient synthesis of spiro[4H-pyran-oxindole] derivatives under [BMIm]BF4 catalysis Tetrahedron, 67 (2011) 5693–5699
[214] H. Y. Guo and Y. Yu, One-pot synthesis of 7-aryl-11,12-dihydrobenzo[h]pyrimido-[4,5-b]quinoline-8,10(7H,9H)-diones via three-component reaction in ionic liquid Chin. Chem. Lett., 21 (2010) 1435–1438.
[215] A. K. Yadav, G. R. Sharma, P. Dhakad and T. Yadav, A novel ionic liquid mediated synthesis of 4 (1H)-quinolones, 5H-thiazolo [3, 2-a] pyrimidin-5-one and 4H-pyrimido [2, 1-b] benzothiazol-4-ones Tetrahedron Lett., 53 (2012) 859–862.
[216] M. Shekouhy and A. Hasaninejad, Ultrasound-promoted catalyst-free one-pot four component synthesis of 2H-indazolo[2,1-b]phthalazine-triones in neutral ionic liquid 1-butyl-3-methylimidazolium bromide Ultrason. Sonochem., 19 (2012) 307–313.
[217] Z. E. Asri, Y. Génisson, F. Guillen, O. Baslé, N. Isambert, M. M. S. Duque, S. Ladeira, J. Rodriguez, T. Constantieux and J.-C. Plaquevent, Multicomponent reactions in ionic liquids: convenient and ecocompatible access to the 2,6-DABCO core Green Chem., 13 (2011) 2549–2552.
[218] M. Dabiri, M. Bahramnejad and S. Bashiribod, [Hmim] TFA catalyzed multicomponent reaction: direct, mild, and efficient procedure for the synthesis of 1,2-dihydroquinazoline derivatives. Mol. Diversity, 14 (2010) 507–512.
[219] E. Soleimani, M. M. Khodaei and A. T. K. Koshvandi, Three-Component, One-Pot Synthesis of Benzo[b][1,4]oxazines in Ionic Liquid 1-Butyl-3-methylimidazolium Bromide Synth. Commun., 42 (2012) 1367–1371
[220] O. B. Pawar, F. R. Chavan, S. S. Sakate and N. D. Shinde, Ultrasound Promoted and Ionic Liquid Catalyzed Cyclocondensation Reaction for the Synthesis of 4(3H)‐Quinazolinones Chin. J. Chem., 28 (2010) 69–71
[221] L.J. Xu, L.C. Feng, Y.W. Sun, W.J. Tang, K.L. Lam, Z. Zhou and A. S. C. Chan, Highly efficient chemoselective construction of 2,2-dimethyl-6-substituted 4-piperidones via multi-component tandem Mannich reaction in ionic liquids Green Chem., 12 (2010) 949–952
[222] B. Wang, S. Zhou, Y. Sun, F. Xu and R. Sun, Salt-type organic acids: a class of green acidic catalysts in organic transformations Curr. Org. Chem., 15 (2011) 1392–1422
[223] D. Fang, J. Yang and C. Jiao, Thermal-regulated PEG 1000-based ionic liquid/PM for one-pot three-component synthesis of 2, 4, 5-trisubstituted imidazoles Catal. Sci. Technol.,1 (2011) 243–245
[224] Y. Yu, H. Guo and X. Li, An improved procedure for the three‐component synthesis of benzo[g]chromene derivatives using basic ionic liquid J. Heterocycl. Chem., 48 (2011) 1264– 1268.
[225] J. M. Khurana, D. Magoo and A. Chaudhary, Efficient and Green Approaches for the Synthesis of 4H-Benzo[g]chromenes in Water, Under Neat Conditions, and Using Task-Specific Ionic Liquid Synth. Commun., 42 (2012) 3211-3219
[226] M. Zakeri, M. M. Heravi, M. Saeedi, N. Karimi, H. A. Oskooie and N. Tavakoli-Hoseini, One‐pot Green Procedure for Synthesis of Tetrahydrobenzo[a]xanthene‐11‐one Catalyzed by Brønsted Ionic Liquids under Solvent‐free Conditions Chin. J. Chem., 29 (2011) 1441–1445
[227] D. Kundu, A. Majee and A. Hajra, Task-specific ionic liquid catalyzed efficient microwave-assisted synthesis of 12-alkyl or aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones under solvent-free conditions Green Chem. Lett. Rev., 4 (2011) 205–209.
[228] A. Chaskar, H. Shaikh, V. Padalkar, K. Phatangare and H. Deokar, IBX promoted one-pot condensation of β-naphthol, aldehydes, and 1,3-dicarbonyl compounds Green Chem. Lett. Rev., 4 (2011) 171–175.
[229] J. M. Khurana, B. Nand and Sneha, An efficient and convenient approach for the synthesis of novel 2‐hydroxy‐12‐aryl‐8,9,10,12‐tetrahydrobenzo[a]xanthene‐11‐ones using p‐toluenesulfonic acid in ethanol and ionic liquid J. Heterocycl. Chem., 48 (2011) 1388–1392.
[230] J. Luo and Q. Zhang, A one-pot multicomponent reaction for synthesis of 1-amidoalkyl-2-naphthols catalyzed by PEG-based dicationic acidic ionic liquids under solvent-free conditions Monatsh. Chem., 142 (2011) 923–930
[231] D. A. Kotadia and S. S. Soni, Silica gel supported–SO3H functionalized benzimidazolium based ionic liquid as a mild and effective catalyst for rapid synthesis of 1-amidoalkyl naphthols J. Mol. Catal. A: Chem., 353 (2012) 44–49.
[232] N. Tavakoli-Hoseini, M. M. Heravi, F. F. Bamoharram and A. Davoodnia, Brønsted acidic ionic liquids as efficient catalysts for clean synthesis of carbamatoalkyl naphthols Bull. Korean Chem. Soc., 32 (2011) 787–792
[233] M. M. Heravi, N. Tavakoli-Hoseini and F. F. Bamoharram, Brønsted acidic ionic liquids as efficient catalysts for the synthesis of amidoalkyl naphthols Synth. Commun., 41 (2011) 298–306.
[234] A. R. Hajipour, Y. Ghayeb, N. Sheikhan and A. E. Ruoho, Brønsted Acidic Ionic Liquid as an Efficient and Reusable Catalyst for One-Pot, Three-Component Synthesis of Pyrimidinone Derivatives via Biginelli-Type Reaction Under Solvent-Free Conditions Synth. Commun.,41 ( 2011) 2226–2233
[235] J. M. Khurana and S. Kumar, Ionic liquid: an efficient and recyclable medium for the synthesis of octahydroquinazolinone and biscoumarin derivatives Monatsh. Chem., 141 (2010) 561–564.
[236] M. Mirzai and H. Valizadeh, Microwave-promoted synthesis of 3, 4-dihydropyrimidin-2 (1H)-(thio) ones using IL-ONO as recyclable base catalyst under solvent-free conditions Synth. Commun., 42 (2012) 1268–1277.
[237] H. Valizadeh and A. Shockravi, Imidazolium‐based phosphinite ionic liquid as reusable catalyst and solvent for one‐pot synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ (thio)ones Heteroat. Chem.,20 (2009) 284–288
[238] T. J. Li, C. S. Yao, C. X. Yu, X. S. Wang and S. J. Tu, Ionic Liquid–Mediated One-Pot Synthesis of 5-(Trifluoromethyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine Derivatives Synth. Commun.,42 (2012) 2728-2738.
[239] A. K. Chakraborti, S. R. Roy, P. S. Jadhavar, K. Seth, K. K. Sharma Organocatalytic Application of Ionic Liquids: [bmim][MeSO4] as a Recyclable Organocatalyst in the Multicomponent Reaction for the Preparation of Dihydropyrimidinones and -thiones Synthesis, 7 (2011) 2261–2267.
[240] D. Fang, J. Yang and C. Ni, Dicationic ionic liquids as recyclable catalysts for one‐pot solvent‐free synthesis of α‐aminophosphonates Heteroat. Chem., 22 (2011) 5–10
[241] A. Davoodnia, M. Bakavoli, R. Moloudi, N. Tavakoli-Hoseini and M. Khashi, Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst Monatsh. Chem., 141 (2010) 867–870.
[242] H. Behmadi, S. Naderipour, S. M. Saadati, M. Barghamadi and M. Shaker, J. Solvent‐free synthesis of new 2, 4, 6‐triarylpyridines catalyzed by a Brønsted acidic ionic liquid as a green and reusable catalyst, Heterocycl. Chem.,48 (2011) 1117–1121.
[243] D. Fang, K. Gong, D.-Z. Zhang and Z.-L. Liu, One-pot, three-component Mannich-type reaction catalyzed by functionalized ionic liquid Monatsh. Chem., 140 (2009) 1325–1329.
[244] F.-F. Yong and Y.-C. Teo, Recyclable siloxy serine organocatalyst for the direct asymmetric mannich reactions in ionic liquids Synth. Commun., 41 (2011) 1293–1300.
[245] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural Deep Eutectic Solvents – Solvents for the 21st Century ACS Sustain. Chem. Eng. 2 (2014) 1063-1071.
[246] Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as new potential media for green technology Anal. Chim. Acta 766 (2013) 61-68.
[247] H. Zhang, B. Tang, K. Row, Extraction of catechin compounds from green tea with a new green solvent Chem. Res. Chin. Univ. 30 (2014) 37-41.
[248] S. Bajkacz, J. Adamek, Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products Talanta 168 (2017) 329-335.
[249] I. Adeyemi, MRM Abu-Zahra, I. Alnashef, Novel green solvents for CO2 capture Energy Procedia, 114 (2017) 2552-2560
[250] C.A. Neuberg, Pro memoria Carl Neuberg Biochem. Z. 76 (1916) 107.
[251] P.G. Jessop, J. R. Vanderveen, J. Durelle, Design and evaluation of switchable hydrophilicity solvents Green Chem. 16 (2014) 1187-1197
[252] Y. Kohno, S. Saita, K. Murata, N. Nakamura, H. Ohno, Extraction of proteins with temperature sensitive and reversible phase change of ionic liquid/water mixture Polym. Chem. 2 (2011) 862-870
[253] D.E. Bergbreiter, P.L. Osburn, T. Smith, C. Li, J.D. Frels, Using Soluble Polymers in Latent Biphasic Systems J. Am. Chem. Soc. 125 (2003) 6254-6260.
[254] Z. Ludmer, T. Golan, E. Ermolenko, N. Brauner, A. Ullmann, Simultaneous Removal of Heavy Metals and Organic Pollutants from Contaminated Sediments and Sludges by a Novel Technology, Sediments Remediation Phase Transition Extraction Environ. Eng. Sci. 26 (2009) 419-430.
[255] C. VollmerandC. Janiak, Naked metal nanoparticles from metal carbonyls in ionic liquids: Easy synthesis and stabilization , Coord. Chem.Rev., 2011, 255, 2039–2057
[256] B. Schäffner, S. P. Verevkin, A. Börner, Green solvents for synthesis and catalysis. Organic carbonates, Chem. Unserer Zeit, 43 (2012) 12-21.
[257] M. Bandres, P. de Caro, S. Thiebaud-Roux, M.E. Borredon, Green syntheses of biobased solvents. Chimie, 14(2011) 636-646.
[258] Y. Gu Multicomponent reactions in unconventional solvents: state of the art, Green Chem., 14 (2012) 2091-2128.
[259] J. N. Tan, M. Li, Y. Gu, Multicomponent reactions of 1,3-disubstituted 5- pyrazolones and formaldehyde in environmentally benign solvent systems and their variations with more fundamental substrates. Green Chem., 12 (2010) 908-914.
[260] Z. J. Quan, R. G. Ren, Y.X. Da, Z. Zhang, X.C. Wang, Glycerol as an Alternative Green Reaction Medium for Multicomponent Reactions Using PS-PEG-OSO3H as Catalyst. Synth. Comm., 41 (2011) 3106-3116.
[261] A. Haimov and R. Neumann, Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation Chem. Commun.,12 (2002) 876–877
[262] H. Alper, K. Januszkiewicz and D. J. H. Smith, Palladium chloride and polyethylene glycol promoted oxidation of terminal and internal olefins Tetrahedron Lett., 26 (1985) 2263–2264
[263] S. Chanrasekhar, Ch. Narsihmulu, S. S. Sultana and N. R. Reddy, Poly(ethylene glycol) (PEG) as a Reusable Solvent Medium for Organic Synthesis. Application in the Heck Reaction Org. Lett., 4 (2002) 4399–4401.
[264] S. L. Jain, S. Singhal and B. Sain, PEG-assisted solvent and catalyst free synthesis of 3,4-dihydropyrimidinones under mild reaction conditions Green Chem., 9 (2007) 740–741.
[265] S. S. Gawande, B. P. Bandgar, P. D. Kadam and S. S. Sable, Uncatalyzed synthesis of thiomorpholide using polyethylene glycol as green reaction media Green Chem. Lett. Rev., 3 (2010) 315–318.
[266] V. V. Kouznetsov, D. R. M. Arenas and A. R. R. Bohórquez, PEG-400 as green reaction medium for Lewis acid-promoted cycloaddition reactions with isoeugenol and anethole Tetrahedron Lett., 49 (2008) 3097–3100 .
[267] S. V. Nalage, A. P. Nikum, M. B. Kalyankar, V. S. Patil, U. D. Patil, K. R. Desale, S. L. Patil and S. V. Bhosale, One-Pot Four Component Synthesis of 4, 6-Disubstituted 3-Cyano-2- Pyridones in Polyethylene Glycol Lett. Org. Chem., 7 (2010) 406–410.
[268] M. Kidwai and D. Bhatnagar, Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1,8-diones in PEG Tetrahedron Lett., 51 (2010) 2700–2703.
[269] S. S. Chobe, G. G. Mandawad, O. S. Yemul, S. S. Kinkar and B. S. Dawane, An efficient one-pot synthesis of substituted pyrazolo [3,4 b:4′,3’e]pyridine derivatives via the hantzch three component condensation using bleaching earth catalyst and their Invitro antimicrobial evaluation Int. J. ChemTech Res., 3 (2011) 938–943
[270] B. M. Shaikh, S. G. Konda, A. V. Mehare, G. G. Mandawad, S. S. Chobe and B. S. Dawane, One-pot multicomponent synthesis and antibacterial evaluation of some novel acridine derivatives Pharma Chem., 2 (2010) 25–29.
[271] X. Wang, H. Gong, Z. Quan, L. Li and H. Ye, One-Pot, Three-Component Synthesis of 1,4-Dihydropyridines in PEG-400 Synth. Commun., 41 (2011) 3251–3258
[272] A. Manvar, D. Karia, V. Trangadia, N. Vekariya and A. Shah, PEG-400 mediated and microwave assisted one pot three-component coupling reactions: Expedient and rapid synthesis of Hantzsch 1,4-dihydropyridines devoid of use of catalyst Org. Chem. Indian J., 3 (2007) 166–169
[273] R. Mallepalli, L. Yeramanchi, R. Bantu and L. Nagarapu, Polyethylene Glycol (PEG-400) as an Efficient and Recyclable Reaction Medium for the One-Pot Synthesis of N-Substituted Azepines under Catalyst-Free Conditions Synlett, 9 (2011) 2730–2732.
[274] L. Nagarapu, R. Mallepalli, L. Yeramanchi and R. Bantu, Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions Tetrahedron Lett., 52 (2011) 3401–3404
[275] P. V. Shinde, A. H. Kategaonkar, B. B. Shingate and M. S. Shingare, Polyethylene glycol (PEG) mediated expeditious synthetic route to 1,3-oxazine derivatives Chin. Chem. Lett., 22 (2011) 915–918
[276] S.-L. Wang, W.-J. Hao, S.-J. Tu, X.-H. Zhang, X.-D. Cao, S. Yan, S.-S. Wu, Z.-G. Han and F. Shi, Poly(ethyleneglycol): A versatile and recyclable reaction medium in gaining access to benzo[4,5]imidazo[1,2‐a]pyrimidines under microwave heating J. Heterocycl. Chem., 46 (2009) 664–668.
[277] S. V. Nalage, M. B. Kalyankar, V. S. Patil, S. V. Bhosale, S. U. Deshmukh and R. P. Pawar, An efficient noncatalytic protocol for the synthesis of trisubstituted imidazole in polyethylene glycol using microwaves Open Catal. J., 3 (2010) 58–61.
[278] B. S. Dawane, S. G. Konda, R. G. Bodade and R. B. Bhosale, An efficient one‐pot synthesis of some new 2,4‐diaryl pyrido[3,2‐c]coumarins as potent antimicrobial agents J. Heterocycl. Chem., 47 (2010) 237–241.
[279] A. A. Mulay and R. A. Mane, Polyethylene glycol mediated one‐pot three‐component synthesis of new 4‐thiazolidinones Heteroat. Chem., 23 (2011) 166–170.
[280] J. R. Mali, M. R. Bhosle, S. R. Mahalle and R. A. Mane, One-Pot Multicomponent Synthetic Route for New Quinolidinyl 2,4-Thiazolidinediones. Bull. Korean Chem. Soc., 31 (2010) 1859–1862.
[281] X. N. Zhang, Y. X. Li and Z. H. Zhang, Nickel chloride-catalyzed one-pot three-component synthesis of pyrazolophthalazinyl spirooxindoles Tetrahedron, 67 (2011) 7426– 7430
[282] S. K. Guchhait and C. Madaan, Towards molecular diversity: dealkylation of tert-butyl amine in Ugi-type multicomponent reaction product establishes tert-butyl isocyanide as a useful convertible isonitrile Synlett, 12 (2009) 628–632
[283] V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants, Acta Naturae. 6(2014) 35–44.
[284] J. Virkutyte and R.S. Varma, Environmentally Friendly Preparation of Metal Nanoparticles Royal Soc. Chem. 7, (2013) 564-569.
[285] P. Chettri, V. S. Vendamani, A Tripathi M. K. Singh A. P. Pathak, A. Tiwari A., Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue, Appl. Surf. Sci. 406 (2017) 312-318
[286] U. Jinu, M. Gomathi, N. Geetha, G. Benelli, P. Venkatachalam, Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7), Microb. Pathogenesis 105 (2017) 8695-9705.
[287] H. Kolya, P. Maiti, A. Pandey, T. Tripathy, Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthusgangeticus Linn leaf extract. J Anal Sci Technol 6 (2015) 33-39.
[288] SSM Hassan, W. Azab, H.R. Ali, M. S. M. Mansour, Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv Nat Sci Nanosci Nanotechnol 6 (2015) 1-10.
[289] K. Lellala, K. Namratha, K. Byrappa, Microwave assisted synthesis and characterization of nanostructure zinc oxide-graphene oxide and photo degradation of brilliant blue. Mater. Today Proc 3 (2016) 74-83.
[290] S. T. Fardood, A. Ramazani, S. M. Pegah, A. Asiabi, Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light, J Mater Sci: Mater Electro 28 (2017) 13596
[291] A. Ramazani, S. T. Fardood, Z. Hosseinzadeh, F. Sadri, S.W. Joo, Green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a biotemplate and their catalytic activity for the oxidation of alcohols. Iran. J Catal 7(2017) 181-185
[292] S. T. Fardood, A. Ramazani, Z. Golfar, S. W. Joo, Green synthesis of Ni‐Cu‐Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Appl. Organomet. Chem., 31(2017) 3823-3870.
[293] M. Sorbiun, E. S. Mehr, A. Ramazani, S. T. Fardood, Green Synthesis of Zinc Oxide and Copper Oxide Nanoparticles Using Aqueous Extract of Oak Fruit Hull (Jaft) and Comparing Their Photocatalytic Degradation of Basic Violet 3, Int J Environ Res 12(2018) 29-37.
[294] M. Rani, Rachna, U. Shanker, Metal hexacyanoferrates nanoparticles mediated degradation of carcinogenic aromatic amines. Environ Nanotechnol Monit Manage 10 (2018) 36-45.
[295] M. Rani, U. Shanker, Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles. Environ Sci Pollut Res 25 (2018)10878-10888
[296] M. Rani, U. Shanker, Promoting sunlight-induced photocatalytic degradation of toxic phenols by efficient and stable double metal cyanide nanocubes. Environ Sci Pollut R 25 (2018) 23764–23779
[297] M. Rani, Studies on decay profiles of quinalphos and thiram pesticides. Ph.D Thesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India, Chapter 1- 5(2012).
[298] M. Rani, U. Shanker, A. Chaurasia, Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J. Env. Chem. Engg. 5(2017) 2730-2739.
[299] M. Rani, U. Shanker, Effective adsorption and enhanced degradation of various pesticides from aqueous solution by Prussian blue nanorods, J. Env. Chem. Engg. 6(2018) 1512-1519.
[300] M. Rani, U. Shanker, Removal of carcinogenic aromatic amines by metal hexacyanoferrates nanocubes synthesized via green process, J. Env. Chem. Engg. 5(2017)5298-5309.
[301] M. Rani, U. Shanker, Sun-light driven rapid photocatalytic degradation of methylene blue by poly (methyl methacrylate)/metal oxide nanocomposites, Colloids Surf A Physicochem Eng Asp. 559 (2018)136–147.
[302] M. Rani, U. Shanker, Insight in to the degradation of bisphenol A by doped ZnO@ZnHCF nanocubes: High photocatalytic performance, J. Colloid Interf. Sci. 530(2018) 16–28.
[303] M. Rani, U. Shanker, Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures, Colloids Surf A Physicochem Eng Asp. 553 (2018) 546–561
[304] M. Rani, U. Shanker , Advanced Treatment Technologies In: C. M. Hussain (ed.), Handbook of Environmental Materials Management, Springer International Publishing AG (2018)
[305] M. Rani, U. Shanker Remediation of Polycyclic Aromatic Hydrocarbons Using nanomaterials , In eds: Green Adsorbents for Pollutant Removal, Springer International Publishing AG, part of Springer Nature, (2018)
[306] M. Rani, U. Shanker, Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations, Int. J. Environ. Sci. Technol. 15 (2018) 1347–1380
[307] M. Rani, U. Shanker, V. Jassal, Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review. J. Environ. Manage. 190 (2017) 208
[308] Shanker U., Rani M., Jassal V., Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15 (2017) 623.
[309] Shanker U., Rani M., Jassal V., B. S. Kaith, Towards green synthesis of nanoparticles: From bio-assisted sources to benign solvents. A review, Int. J. Environ. Anal. Chem, 96 (2016) 801.
[310] Shanker U., Rani M., Jassal V., Green synthesis of iron hexacyanoferrate nanoparticles: Potential candidate for the degradation of toxic PAHs. J Env Chem Engg 5 (2017)4108-4120
[311] Shanker U., Rani M., Jassal V., Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight, RSc Adv. 6(2017) 94989-9499.
[312] U. Shanker, V. Jassal, M. Rani, Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes, J. Environ. Manage. 204(2017) 337-345.
[313] V. Jassal U. Shanker S. Gahlot B.S. Kaith, Kamaluddin, M. A. Iqubal, P. Samuel, Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines, Appl. Phys. A 122 (2016) 271-280.
[314] V. Jassal, U. Shanker, B. S. Kaith, Aegle marmelos mediated green synthesis of different nanostructured metal hexacyanoferrates: activity against photodegradation of harmful organic dyes, Scientifica 2016 (2016) 1-17.
[315] V. Jassal, U. Shanker, B. S. Kaith, S. Shankar, Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes, RSC Adv. 5 (2015) 26141-26150.
[316] V. Jassal, U. Shanker S. Gahlot, Green synthesis of some iron oxide nanoparticles and their interaction with 2-Amino, 3-Amino and 4-Aminopyridines, Mater. Today. Proc. 3(2016) 1874-1880.
[317] Rachna, M. Rani, U. Shanker, Enhanced photocatalytic degradation of chrysene by Fe2O3@ZnHCF nanocubes. Chem Eng J, 348(2018) 754-760.
[318] V. Smuleac, R. Varma, S. Sikdar, D. Bhattacharyya, Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Membr. Sci. 379(2011) 131-140.
[319] F. Luo, D. Yang, Z. Chen, M. Megharaj, R. Naidu, One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange II. J Hazard Mater 303(2016) 145-151.
[320] T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T. B. Scott, K. R. Hallam, Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172(2011) 258-268.
[321] M. Sabbaghan, A. S. Shahvelayati, S. F. Bashtani, Synthesis and optical properties of ZnO nanostructures in imidazolium-based ionic liquids, Solid State Sciences 14 (2012) 1191-1195
[322] M. Sabbaghan, A. S. Shahvelayati, S. Banihashem, Green synthesis of symmetrical imidazolium based ionic liquids and their application in the preparation of ZnO nanostructures, Ceramics International 42 (2016) 3820–3825
[323] Q. Liu and Y.-N. Zhang, One-pot Synthesis of 3-Methyl-4-arylmethylene-isoxazol-5(4H)-ones Catalyzed by Sodium Benzoate in Aqueous Media: A Green Chemistry Strategy, Bull. Korean Chem. Soc., 32 (2011) 3559– 3560
[324] H. Olivier-Bourbigou, L. Magna, Ionic liquids: perspectives for organic and catalytic reactions Journal of Molecular Catalysis A: Chemical 182–183 (2002) 419–437
[325] M. Sabbaghana, J. Beheshtian, S.A.M. Mirsaeidi, Preparation of uniform 2D ZnO nanostructures by the ionic liquid-assisted sonochemical method and their optical properties, Ceram. Int. 40 (2014) 7769–7774.
[326] S. Zhao, Y. Zhang, Y. Zhou, C. Zhang, J. Fang, X. Sheng, Ionic liquid-assisted photochemical synthesis of ZnO/Ag2O heterostructures with enhanced visible light photocatalytic activity, Appl. Surf. Sci. 410 (2017) 344–353
[327] M. Koel, Do we need green analytical chemistry? Green Chem. 18 (2016) 923–931.
[328] M. Tobiszewski and J. N.Snik Greener organic solvents in analytical chemistry Current Opinion in Green and Sustainable Chemistry 5 (2017) 1–4
[329] K. D. Clark, O. Nacham, J. A. Purslow, S. A. Pierson, J. L. Anderson, Magnetic ionic liquids in analytical chemistry: a review. Anal. Chim. Acta 934 (2016) 9–21.
[330] A. Ballesteros-Gómez, M. Dolores Sicilia, S. Rubio, Supramolecular solvents in the extraction of organic compounds. review. Anal. Chim. Acta 677 (2010) 108–130.
[331] M. Espino, M. de los Ángeles Fernández, F. J. V. Gomez, M. Fernanda Silva, Natural designer solvents for greening analytical chemistry. Trends Anal. Chem. 76(2016)126–136.
[332] V. Abrahamsson, N. Andersson, B. Nilsson, C. Turner, Method development in inverse modeling applied to supercritical fluid extraction of lipids. J. Supercrit. Fluids 111(2016) 111:14–27
[333] J. P. Taygerly, L. M. Miller, A. Yee, E. A. Peterson, A convenient guide to help select replacement solvents for dichloromethane in chromatography. Green Chem. 14 (2012) 3020–3025.
[334] S. Yao, B. Chen, T. A. van Beek, Alternative solvents can make preparative liquid chromatography greener. Green Chem. 17 (2015) 4073–4081.
[335] F. Tache, S. Udrescu, F. Albua, F. Micale, A. Medvedovici, Greening pharmaceutical applications of liquid chromatography through using propylene carbonate–ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases. J. Pharm. Biomed. Anal. 75 (2013) 230–238
[336] C. S. Funari, R. L. Carneiro, M. M. Khandagale, A. J. Cavalheiro, E. F. Hilder EF: Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. J. Sep. Sci. 38 (2015) 1458–1465.
[337] N. Prache, S. Abreu, P. Sassiat, D. Thiébaut, P. Chaminade, Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes. J. Chromatogr. A 1464 (2016) 55–63.
[338] A. Spietelun, L. Marcinkowski, M. de la Guardia, J. N.Snik, Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta 119 (2014) 34–45.
[339] P. Bigus, N. J. Snik, M. Tobiszewski, Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid–liquid microextraction. J. Chromatogr. A 1446 (2016) 21–26.
[340] L. Wang, J. Littlewood, R. J. Murphy, An economic and environmental evaluation for bamboo-derived bioethanol. RSC Adv. 4 (2014) 29604–29611.
[341] F. Pena-Pereira, A. Kloskowski, N. J. Snik, Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of generation of eco-friendly alternatives. Green Chem. 17 (2015) 3687–3705
[342] S.P.J. Ahmadkalaei, S Gan, H K. Ng, S. A. Talib, Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil. Environ. Sci. Pollut. Res. 23 (2016) 22008–22018.
[343] S. J. Tenne, J. Kinzel, M. Arlt, F. Sibilla, M. Bocola, U. Schwaneberg, 2-Methyltetrahydrofuran and cyclopentylmethylether: two green solvents for efficient purification of membrane proteins like FhuA. J. Chromatogr. B 937 (2013) 13–17.
[344] K. Sharma, N. Mahato, M. Hwan Cho, Y. Rok Lee, Converting citrus wastes into value-added products: economic and environmently friendly approaches. Nutrition, 34 (2017) 29–46.
[345] S. Veillet, V. Tomao, K. Ruiz, F. Chemat, Green procedure using limonene in the Dean–Stark apparatus for moisture determination in food products. Anal. Chim. Acta 674 (2010) 49–52.
[346] M. Virot, V. Tomao, C. Ginies, F. Visinoni, F. Chemat, Green procedure with a green solvent for fats and oils’ determination Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation. J. Chromatogr. A 1196–1197 (2008) 147–152.
[347] A. Medvedovici, S. Udrescu, V. David, Use of a green (bio) solvent – limonene – as extractant and immiscible diluent for large volume injection in the RPLC-tandem MS assay of statins and related metabolites in human plasma. Biomed. Chromatogr. 27 (2013) 48–57.
[348] M. Tobiszewski, N. J.Snik, F. Pena-Pereira, Environmental risk – based ranking of solvents by the combination of multimedia model and multi-criteria decision analysis. Green Chem. 19 (2017) 1034–1043.
[349] Y. Leng Kua, S. Gan, A. Morris, H. Kiat Ng, Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain. Chem. Pharm. 4 (2016) 21–31.
[350] Z. Li, K. H. Smith, G. W. Stevens, The use of environmentally sustainable bio-derived solvents in solvent extraction applications— a review. Chin. J. Chem. Eng 24 (2016) 215–220.