Industrial Application of Ionic Liquids in the Paint Industry


Industrial Application of Ionic Liquids in the Paint Industry

Muzammil Kuddushi, Monika Jain, Naved I Malek

Paints, used to decorate or protect the substrate from external forces are composed of pigments, binders, and thinner. The paint industry uses various volatile organic solvents (VOCs) as one of the integral components of paints despite their detrimental effect on the environment. Among the tested strategies to develop environmentally benign alternatives to the VOCs, ionic liquids (ILs) have emerged as potential candidates. In this context, the main objective of this chapter is to introduce the new types of low viscous, highly efficient ILs that can be used in the paint industries. The strategy entails not only an exploration of the influence of the nature of the ILs but also to develop the much needed fundamental, molecular-level view of the heterogeneity of such systems.

Paints, Volatile Organic Compounds, Ionic Liquids, Varnish Removal, Paint Removal

Published online 5/25/2019, 18 pages

Citation: Muzammil Kuddushi, Monika Jain, Naved I Malek, Industrial Application of Ionic Liquids in the Paint Industry, Materials Research Foundations, Vol. 50, pp 107-124, 2019


Part of the book on Industrial Applications of Green Solvents

[1] S. Solomon, The whole truth what’s news (and what’s not) about the ozone hole, Nature 427(2004) 289–291.
[2] E.C. Weatherhead, S.B. Andersen, The search for signs of recovery of the ozone layer, Nature 441 (2006) 39–45.
[3] O. Morgenstern, P. Braesicke, M.M. Hurwitz, F.M. O’Connor, A.C. Bushell, C.E. Johnson, J.A. Pyle, The world avoided by the Montreal Protocol, Geophys. Res. Lett. 35 (2008) 1–5.
[4] A.M. Omer, Energy, environment and sustainable development, Renew. Sustain. Energ. Rev. 12 (2008) 2265–2300.
[5] O.O. Kunle, J. Fortunak, R.D. Rogers, Workshop in green chemistry production of essential medicines in developing countries, Green Chem. 10 (2008) 823–824.
[6] R.A. Sheldon, E Factors, green chemistry and catalysis: An odyssey, Chem. Comm. (2008) 3352–3365.
[7] W. Leitner, M. Poliakoff, Supercritical fluids in green chemistry, Green Chem. 10 (2008) 730-731.
[8] M. Poliakoff, P. Licence, Sustainable technology: Green Chemistry, Nature 450 (2007) 810–812.
[9] D. Kralisch, D. Reinhardt, G. Kreisel, Implementing objectives of sustainability into ionic liquids research and development, Green Chem. 9 (2007) 1308-1318.
[10] R. Lambourne, T.A, Strivens, Paint and Surface Coatings, Theory and Practice, Second edition, Woodhead Publishing Ltd. England, 1999.
[11] G. Schuerman, R. Bruzan, Chemistry of paint, J. Chem. Educ. 66 (1989) 327–328.
[12] Kathryn R. Williams, House paint, J. Chem. Edu. 83 (2006) 1448-1449.
[13] G. Wypych, Handbook of Solvents, ChemTec Publishing, Ontario, Canada, 2014.
[14] C. Reichardt, Pyridinium N -phenolate betaine dyes as empirical indicators of solvent polarity : Some new findings, Pure Appl. Chem. 76 (2004) 1903–1919.
[15] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Weinheim, Germany, 2003.
[16] C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev.94 (1994) 2319-2358.
[17] E. Buncel, R. A. Stairs, H. Wilson, The Role of the Solvent in Chemical Reactions, Oxford University Press: Oxford, 2003.
[18] Z.R. Master, Z.S. Vaid, U.U. More, N.I. Malek, Molecular interaction study through experimental and theoretical volumetric, transport and refractive properties of N-ethylaniline with aryl and alkyl ethers at several temperatures, Phys. Chem. Liq. 54 (2016) 223-244.
[19] Z.R. Master, N. I. Malek, Molecular interactions study through experimental and theoretical volumetric, acoustic and refractive properties of binary liquid mixtures at several temperatures 1. N, N-dimethylaniline with Aryl, and Alkyl Ethers, J. Mol. Liq.196 (2014) 120-134.
[20] N.I. Malek, S.P. Ijardar, S.B. Oswal, Estimation of speeds of sound in cyclohexane with benzene, benzaldehyde or cyclohexylamine, and cyclohexylamine with benzene the temperature range (293.15–323.15) K employing semi-empirical and theoretical equations. Ind. J. Chem. 52A (2013) 492-497.
[21] N.I. Malek, S.P. Ijardar, Z.R. Master, S.B. Oswal, Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine+ cyclohexane or benzene in the range (293.15 to 323.15) K, Thermochim. Acta 547 (2012) 106-119.
[22] N.I. Malek, S.P. Ijardar, S.B. Oswal, Volumetric and acoustic properties of binary mixtures of Cyclohexane + Benzene and + Benzaldehyde at (293.15 to 323.15) K, Thermochim. Acta 539 (2012) 71– 83.
[23] V. Pandiyan, S.L. Oswal, N.I. Malek, P. Vasantharani, Thermodynamic and acoustic properties of binary mixtures of ethers. V. Diisopropyl ether or oxolane with 2- or 3-chloroanilines at 303.15, 313.15 and 323.15 K, Thermochim. Acta, 524 (2011) 140-150.
[24] S.P. Ijardar, N.I. Malek, S.L. Oswal, Studies on volumetric properties of triethylamine in organic solvents with varying polarity, Ind. J. Chem. 50-A (2011)1709-1718.
[25] S.L. Oswal, J.S. Desai, S.P. Ijardar, N. I. Malek, Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solvents,Thermochim. Acta, 427 (2005) 51–60.
[26] P. Knochel (Ed.) Modern solvents in organic synthesis, Springer-Verlag, Berlin Heidelberg 1999.
[27] D.J. Adams, P.J. Dyson, S.J. Tavener, Chemistry in alternative reaction media, Wiley: Chichester, 2004.
[28] Loupy, Solvent free reactions, in: P. Knochel (Ed) Modern solvents in organic synthesis Springer-Verlag, Berlin Heidelberg 1999.
[29] M. Steinbacher, M.K. Vollmer, B. Buchmann, S. Reimann, An evaluation of the current radiative forcing benefit of the Montreal Protocol at the high-Alpine site Jungfraujoch, Sci.Total Environ. 391 (2008) 217–223.
[30] O. Morgenstern, P. Braesicke, M.M. Hurwitz, F.M. O’Connor, A.C. Bushell, C.E. Johnson, J.A. Pyle, The world avoided by the Montreal Protocol, Geophys. Res. Lett. 35 (2008) 1–5.
[31] P.T. Anastas, J.C. Warner, Green chemistry: Theory and practice, Oxford university press: Oxford, 1998.
[32] A.S. Matlack, Introduction to green chemistry, Marcel Dekker, New York, 2001.
[33] W.M. Nelson, Green solvents for chemistry- Perspective and practice; Oxford University Press, Oxford 2003.
[34] P.A. Gricco, Organic synthesis in water; Blackie academic and professional: London, 1998.
[35] N. Akiya, P.E. Savage, Roles of water for chemical reactions in high-temperature water, Chem. Rev. 102 (2002) 2725-2750.
[36] P.G. Jessop, W. Leitner, Chemical synthesis using supercritical fluids, Wiley-VCH, Weinheim, 1999.
[37] R. Noyori, Supercritical fluids: Introduction, Chem. Rev. 99 (1999) 353-354.
[38] N. Akiya, P.E. Savage, Roles of water for chemical reactions in high-temperature water, Chem. Rev. 102 (2002) 2725–2750.
[39] Y. Marcus, Solvatochromic probes in supercritical fluids, J. Phys. Org. Chem. 18 (2005) 373–384.
[40] M. Kidwai, Dry media reactions, Pure Appl. Chem. 73 (2001) 147–151.
[41] G.A. Baker, S.N. Baker, S. Pandey, F. V. Bright, An analytical view of ionic liquids, Analyst 130 (2005) 800–808.
[42] P. Wasserscheid, T. Welton, Ionic liquids in synthesis, Org. Proc. Res. Dev. 7 (2003) 223-224.
[43] J.P. Hallett, T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis.2, Chem. Rev. 99 (2011) 3508-3576.
[44] R.D. Rogers, K.R. Seddon, Ionic Liquids: Industrial Applications for Green Chemistry, J. Am. Chem. Soc. 125 (2003) 7480.
[45] R.D. Rogers, K.R. Seddon, S. Volkov (Eds.), Green industrial applications of ionic liquids, NATO Science Series II, Springer Netherlands 2003.
[46] R.D. Rogers, K.R. Seddon, Ionic liquids III: Fundamentals, challenges, and opportunities, American Chemical Society, Washington, 2005.
[47] H. Ohno, Electrochemical aspects of ionic liquids, 2nd edition, Wiley-Interscience: New York, 2005.
[48] C.F. Poole, Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids, J. Chromotogr. A. 1037 (2004) 49-82.
[49] H. Weingärtner, Understanding ionic liquids at the molecular level: Facts, problems, and controversies, Angew. Chem. Int. Ed. Engl. 47 (2008) 654–670.
[50] T.L. Greaves, C.J. Drummond, Protic ionic liquids: Properties and applications, Chem. Rev. 108 (2008) 206-237.
[51] P. Domínguez De María, “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis, Angew. Chem. 47 (2008) 6960–6968.
[52] S. Pandey, Analytical applications of room-temperature ionic liquids: A review of recent efforts, Anal. Chim. Acta. 556 (2006) 38–45.
[53] J.S. Wilkes, A short history of ionic liquids-From molten salts to neoteric solvents, Green Chem. 4 (2002) 73–80.
[54] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem. 3 (2001) 156–164.
[55] H. Ohno (Ed.), Ionic liquids: The front and future of material developments, CMC, Tokyo 2003.
[56] K.R. Seddon, Ionic liquids: A taste of the feature, Nat. Mater. 2 (2003) 363-365.
[57] R.D. Rogers, K.R. Seddon, Ionic liquids solvents of the future, Science 32 (2003) 792-793.
[58] Shah, M. Kuddushi, S. Rajput, O.A. El Seoud, N.I. Malek, Ionic liquids based catanionic coacervates: The novel microreactors for membrane free sequestration of dyes and curcumin, ACS Omega, 3 (2018) 17751-17761.
[59] M. Kuddushi, N. K. Patel, S.M. Rajput, A. Shah, O.A. El Seoud, N.I. Malek, Thermo-switchable de Novo ionic liquid-based gelators with dye-absorbing and drug-encapsulating characteristics, ACS Omega, 9 (2018) 12068-12078.
[60] S. M. Rajput, K. Gangele, S. Kumar, V.K. Aswal, J.P. Mata, N.I. Malek, S.K. Kailasa, K.M. Poluri, Nano‐vehicles for drug delivery using low‐cost cationic surfactants: A drug induced structural transitions, Chemistry Select, 3 (2018) 9454-9463.
[61] A.C. Pinheiro, A.B. Gonçalves, W.J. Baader, L.F. Yamaguchi, N.I. Malek, E.L. Bastos, O.A. El Seoud, Biofuels from coconut fat and soybean oil: microwave-assisted synthesis and gas chromatography/mass spectrometry analysis, Quimica Nova, 41(2018) 1200-1204.
[62] T.A. Bioni, N.I. Malek, O.A. El Seoud, Kinetics of cellulose acylation with carboxylic anhydrides and N-acylimidazoles in ionic liquid/molecular solvent mixtures: Relevance to the synthesis of mixed cellulose esters, Lenzinger Berichte, 94 (2018) 57-66.
[63] Z.S. Vaid, S.M. Rajput, A. Shah, Y. Kadam, A. Kumar, O.A. El Seoud, J.P. Mata, N.I. Malek, Salt-induced microstructural transitions in aqueous dispersions of ionic-liquids based surfactants, Chemistry Select, 17 (2018) 4851-4858.
[64] S.M. Rajput, S. Kumar, V.K. Aswal, O.A. EI Seoud, N.I. Malek, S.K. Kailasa, Drug-induced micelle-to-vesicle transition of a cationic gemini surfactant: Potential applications in drug delivery, Chem. Phys. Chem. 19 (2018) 865-872.
[65] Z.S. Vaid, S.M. Rajput, M. Kuddushi, A. Kumar, O.A. El Seoud, N.I. Malek, Synergistic interaction between cholesterol and functionalized ionic liquid based surfactant leading to the morphological transition, Chemistry Select 3 (2018) 1300-1308.
[66] U.U More, Z.S. Vaid, S.M. Rajput, N.I. Malek, O.A. El Seoud, Effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on the micellar properties of [butanediyl-1,4-bis(dimethyldodecylammonium bromide)] gemini surfactant in aqueous solution, Colloid. Polymer. Sci. 295 (2017) 2351-2361.
[67] Z.S. Vaid, A. Kumar, O.A. El Seoud, N.I. Malek, Drug induced micelle-to-vesicle transition in aqueous solutions of cationic surfactants, RSC Adv. 7 (2017) 3861-3869.
[68] S.M. Rajput, U.U. More, Z.S. Vaid, K.D. Prajapati, N.I. Malek, Impact of organic solvents on the micellization and interfacial behavior of ionic liquid based surfactants, Colloid. Surface. Physiochem. Eng. Aspect. 507 (2016) 182-189.
[69] K. Moodley, M. Mabaso, I. Bahadur, G.G. Redhi, Industrial application of ionic liquids for the recoveries of spent paint solvent, J. Mol. Liq. 219 (2016) 206-210.
[70] K. Kowalczyk, T. Spychaj, Zinc-free varnishes and zinc-rich paints modified with ionic liquids, Corrosion Sci. 78 (2014) 111-120.
[71] Sarwono, Z. Man, A. Idris, T.H. Nee, N. Muhammad, A.S. Khan, Z. Ullah, Alkyd paint removal: Ionic liquid vs volatile organic compound (VOC), Progr. Org. Coating. 122 (2018) 79-87.
[72] Weyershausen, K. Lehmann, Industrial application of ionic liquids as performance additives, Green Chem. 7 (2005) 15-19.
[73] J.F. Liu, N. Li, G.B. Jiang, J.M. Liu, J.A. Jönsson, M.J. Wen, Disposable ionic liquid coating for headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in paints followed by gas chromatography-flame ionization detection, J. Chrom. 1066 (2005) 27-32.
[74] D. Li, O. Sevastyanova, M. Ek, Ionic liquids pretreatment of cellulose fiber materials for improvement of reactivity and value added applications, 16th International symposium on wood, fiber and pulping chemistry-proceedings, ISWFPC, 1 (2011) 503-510.
[75] Syrotyńska, E. Makarewicz, O. Shyichuk, A study of ionic liquids as biocides in emulsion paints and coatings, Przemysl Chemiczny, 89 (2010) 1528-1532.
[76] R.D. Roger, K.R. Seddon, Ionic liquids as green solvents: progress and prospects, American Chemical Society: Washington, D.C. 2003.
[77] K.R. Seddon, A. Stark, M.J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem. 72 (2000) 2275-2287.
[78] Y. Chauvin, B. Gilbert, I. Guibard, Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts, J. Chem. Soc., Chem. Commun. 0 (1990) 1715–1716.
[79] R.T. Carlin, J.S. Wilkes, Complexation of Cp2MCl2 in a chloroaluminate molten salt: relevance to homogeneous Ziegler-Natta catalysis, J. Mol. Catal. 63 (1990) 125–129.
[80] J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-Ethy1-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. (1992) 965-967.
[81] Y. Chauvin, L. Mussmann, H. Olivier, A novel class of versatile solvents for two-phase catalysis: Hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-Dialkylimidazolium salts, Angew. Chem. 34 (1996) 2698-2700.
[82] J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-Ethy1-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. (1992) 965-967.
[83] P.B. Hitchcock, T.J. Mohammed, K.R. Seddon, J.A. Zora, C.L. Hussey, E. Haynes Ward, 1-methyl-3-ethylimidazolium hexachlorouranate(IV) and 1-methyl-3-ethylimidazolium tetrachlorodioxo-uranate(VI): Synthesis, structure, and electrochemistry in a room temperature ionic liquid, Inorg. Chim. Acta. 113 (1986) L25–L26.
[84] G. Diakun, L. Fairall, A. Klug, Room tempreature ionic liquids as a solvent for electronic absorption spectroscopy of halide complexes, Nature 324 (1986) 698–699.
[85] Y. Chauvin, B. Gilbert, I. Guibard, Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts, J. Chem. Soc., Chem. Commun. (1990) 1715–1716.
[86] J.A. Boon, J.A. Levisky, J.L. Pflug, J.S. Wilkes, Friedel-Crafts Reactions in Ambient-Temperature Molten Salts, J. Org. Chem. 51 (1986) 480-483.
[87] 13 December 2018).
[88] C. Chiappe, D. Pieraccini, Ionic liquids: Solvent properties and organic reactivity, J. Phys Org. Chem. 18 (2005) 275–297.
[89] J.F. Brennecke, E.J. Maginn, Ionic liquids; innovative fluids for chemical processing, AIChE Journal, 11 (2001) 2384-2389.
[90] P.A. Hunt, I.R. Gould, B. Kirchner, The structure of imidazolium-based ionic liquids: Insights from ion-pair interactions, Aust. J. Chem. 60 (2007) 9-14.
[91] National Aeronautics and Space Administration (NASA) Final Report and Deliverables, “Precision Cleaning of Oxygen Systems and Components,” NASA/CR-2009-214757.
[92] M.F. Pacheco, A.I. Pereira, L.C. Branco, A.J. Parola, Varnish removal from paintings using ionic liquids, J. Mater. Chem. A, 1 (2013) 7016-7018.