Corrosive and Mechanical Experimental Tests for Selected Stainless Steel Pipes

Corrosive and Mechanical Experimental Tests for Selected Stainless Steel Pipes

Wasilewska Katarzyna, Glinicka Aniela

download PDF

Abstract. The article presents corrosion tests of small diameters pipes made of stainless steel OH17N12M2 chromium – nickel – molybdenum with material number 1.4401 EN 10088 which does not have a pronounced yield point. The samples were subjected to corrosion in a laboratory at room temperature in solutions of sulfuric and hydrochloric acid at specified concentrations and in a given time. Corrosion was observed as surface uniform. As a result of the analysis, the dependences showing the mass loss as a function of time were obtained and the corrosion rate and average speed were determined. Following that, some of the corroded and non-corroded samples were subjected to a bending test in the Instron 3382 testing machine. On the basis of the measurements, plots showing maximum deflection of a beam as a function of bending load were created and compared. It was determined that the samples which were corroded for 720 h in 5% H2SO4 were not corroded and retained the bending capacity. Samples corroded for longer period of time or in more potent acids had the bending capacity reduced which was noted.

Corrosion, Small Diameter Pipes, Stainless Steel, Experimental Studies

Published online 5/25/2019, 6 pages
Copyright © 2019 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Wasilewska Katarzyna, Glinicka Aniela, Corrosive and Mechanical Experimental Tests for Selected Stainless Steel Pipes, Materials Research Proceedings, Vol. 12, pp 31-36, 2019


The article was published as article 4 of the book Experimental Mechanics of Solids

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] G. Łagoda: Wiadukty nad autostradami, Wybrane zagadnienia kształtowania konstrukcyjnego i estetycznego. OW PW Warszawa (2001).
[2] P.Grzesiak, R.Motława, Korozja stali w kwasie siarkowym. Instytut Ochrony roślin, PIB, Poznań (2008).
[3] P.R. Roberge: Corrosion Engineering. Principle and Practice. McGraw-Hill, USA (2008).
[4] PN-EN 10155:1997 + Apl: (2003): Skład chemiczny i wybrane własności mechaniczne stali konstrukcyjnych trudno rdzewiejących.
[5] PN-EN 10088-1. Stale odporne na korozję – część 1.Gatunki stali odpornych na korozję.
[6] K. Wasilewska: Wpływ korozji na nośność wybranych elementów stosowanych w sieciach komunalnych, Rozprawa doktorska. PW, Warszawa (2014).
[7] S.D. Cramer, B.S. Covino (ed.), Corrosion: Environments and Industries, Handbook, Volume 13, ASM International (2006).
[8] H. Szydłowski: Teoria pomiarów, PWN, Warszawa (1981).
[9] A. Glinicka, C. Ajdukiewicz, S. Imiełowski, Effects of uniformly distributed side corrosion on thin-walled open cross-section steel columns. Roads and Bridges, 159 (2016), pp. 257 – 270.
[10] A. Glinicka, M. Kruk, Analiza eksperymentalna wyboczenia niesprężystego prętów
stalowych poddanych korozji w komorze mgły solnej. Drogi i Mosty 3 (2010), pp. 5- 27.
[11] A. Glinicka, M. Maciąg, Reduction of the bearing capacity of a thin- walled steel beam-column as a result of uniform corrosion, MATEC Web of Conferences 196, 01046 (2018), XXVII R-S-P seminar 2018, Theoretical Foundation of Civil Engineering.
[12] K. Wasilewska, A. Glinicka, Próba ściskania rur ze stali nierdzewnej poddanych działaniu środowisk agresywnych. Logistyka 3 (2012), pp. 2375 – 2381.
[13] Instrukcja obsługi programu BlueHill v.2.6, Instron Corporation, Copyright, (2004).