Comparative Analysis of Methods for Determining Cyclic Properties of Metals

Comparative Analysis of Methods for Determining Cyclic Properties of Metals

Stanisław Mroziński, Zbigniew Lis

download PDF

Abstract. The study compares several methods for determining material data required for fatigue life calculation. The test methods were compared at ambient temperature (T=20ºC) and increased temperature (T=600ºC). The results show the applicability of simplified methods for determining material data.

Keywords
Low-Cycle Properties, Fatigue Life, P91 Steel X10CRMOVNB9-1

Published online 5/25/2019, 7 pages
Copyright © 2019 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Stanisław Mroziński, Zbigniew Lis, Comparative Analysis of Methods for Determining Cyclic Properties of Metals, Materials Research Proceedings, Vol. 12, pp 139-145, 2019

DOI: https://doi.org/10.21741/9781644900215-20

The article was published as article 20 of the book Experimental Mechanics of Solids

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] PN-84/H-04334 Low-cycle fatigue test for metals.
[2] ASTM E606-92: Standard Practice for Strain – Controlled Fatigue Testing.
[3] S. Mroziński, Analiza porównawcza dwóch metod wyznaczania własności cyklicznych metali, Przegląd Mechaniczny Nr 4 (2004) 30-36.
[4] S. Kocańda, A. Kocańda, Low-cycle fatigue strength of metals, PWN Warsaw (1989).
[5] M. Bayerlein, H. Christ, H. Mughrabi, A critical evaluation of the incremental step test, II International Conference on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Munich (1987) 149-153. https://doi.org/10.1007/978-94-009-3459-7_22
[6] S. Mroziński, H. Egner, M. Piotrowski, Effects of fatigue testing on low-cycle properties of P91 steel, International Journal of Fatigue 120 (2019) 65–72. https://doi.org/10.1016/j.ijfatigue.2018.11.001
[7] W. Ramberg, W.R. Osgood, Description of stress-strain curves by three parameters, NACA, Tech.Note, No 402, (1943).
[8] J. Kaleta, Experimental basics of energy-based fatigue hypotheses, Oficyna Wydawnicza Politechniki Wrocławskiej, Monograph no. 24, (1998).
[9] F. Ellyin, D. Kujawski, Plastic strain energy in fatigue failure, J. Pressure Vessel Technology, Trans. ASME 106 (1984) 342-347. https://doi.org/10.1115/1.3264362
[10] Z. Zhang, Z. Hu, S. Schmauder, M. Mlikota K. Fan, Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature, Journal of Materials Engineering and Performance Volume 25 (2016) 1650-1662. https://doi.org/10.1007/s11665-016-1977-8
[11] D.G. Pavlou, The theory of the S-N fatigue damage envelope: generalization of linear, double linear, and non-linear fatigue damage models. International Journal of Fatigue, 110 (2018) 204-214. https://doi.org/10.1016/j.ijfatigue.2018.01.023