Polymer Electrolyte Membrane Methanol Fuel Cells: Technology and Applications

$20.00

Polymer Electrolyte Membrane Methanol Fuel Cells: Technology and Applications

P. Thomas, N.P. Rumjit, C.W. Lai, M.R.B. Johan

This chapter discusses the recent development of polymer electrolyte membrane methanol fuel cells and its applications, including the fuel cell’s components, models and comparison studies concerning the direct methanol fuel cell. Indeed, polymer electrolyte membrane methanol fuel cells undergo electrochemical reaction for the conversion of chemical energy into useful electrical energy, suiting its applications role as mobile and stationary energy sources due to its outstanding power density, energy production, and fewer emissions. Thus, polymer electrolyte membrane methanol fuel cells open up new dimensions in the energy storage industry lately.

Keywords
Polymer Electrolyte Membrane Methanol Fuel Cells, Electrochemical Reaction, Chemical Energy, Electrical Energy, Energy Storage

Published online 5/5/2019, 38 pages

Citation: P. Thomas, N.P. Rumjit, C.W. Lai, M.R.B. Johan, Polymer Electrolyte Membrane Methanol Fuel Cells: Technology and Applications, Materials Research Foundations, Vol. 49, pp 193-230, 2019

DOI: https://doi.org/10.21741/9781644900192-7

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1] Fuel Cell Benefits – Fuel Cell Today, (n.d.). http://www.fuelcelltoday.com/about-fuel-cells/benefits (accessed February 15, 2019)
[2] C.M. Branco, S. Sharma, M.M. de Camargo Forte, R. Steinberger-Wilckens, New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells, J. Power Sources. 316 (2016) 139–159. https://doi.org/10.1016/j.jpowsour.2016.03.052
[3] M. Zakeri, E. Abouzari-Lotf, M.M. Nasef, A. Ahmad, M. Miyake, T.M. Ting, P. Sithambaranathan, Fabrication and characterization of supported dual acidic ionic liquids for polymer electrolyte membrane fuel cell applications, Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.05.010
[4] P. Prapainainar, S. Maliwan, K. Sarakham, Z. Du, C. Prapainainar, S.M. Holmes, P. Kongkachuichay, Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance, Int. J. Hydrogen Energy. 43 (2018) 14675–14690. https://doi.org/10.1016/j.ijhydene.2018.05.173
[5] S.R. Yang, S.K. Kim, D.H. Jung, T. Kim, H.S. Kim, D.H. Peck, Effects of ethanol in methanol fuel on the performance of membrane electrode assemblies for direct methanol fuel cells, J. Ind. Eng. Chem. 66 (2018) 100–106. https://doi.org/10.1016/j.jiec.2018.05.018
[6] K. Kwon, D. Kim, Polymer electrolyte membrane and methanol fuel cell, in: nanostructured polym. membr., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016: pp. 209–249. https://doi.org/10.1002/9781118831823.ch5
[7] H. Tsuchiya, Mass production cost of PEM fuel cell by learning curve, Int. J. Hydrogen Energy. 29 (2004) 985–990. https://doi.org/10.1016/j.ijhydene.2003.10.011
[8] Polymer Electrolyte Membrane Fuel Cells Market | Growth, Trends, and Forecast (2018 – 2023), (n.d.)
[9] DOE, B.M. Institute, Manufacturing Cost Analysis of Polymer Electrolyte Membrane ( PEM ) Fuel Cell Systems for Material Handling Applications, DOE Rep. (2017) 1–137
[10] M. Sgroi, F. Zedde, O. Barbera, A. Stassi, D. Sebastián, F. Lufrano, V. Baglio, A. Aricò, J. Bonde, M. Schuster, Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production, Energies. 9 (2016) 1008. https://doi.org/10.3390/en9121008
[11] H. Junoh, J. Jaafar, M.N.A. Mohd Norddin, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N. Yusof, W.N. Wan Salleh, H. Ilbeygi, A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell, J. Nanomater. 2015 (2015) 1–16. https://doi.org/10.1155/2015/690965
[12] W. He, G. Lin, T. Van Nguyen, Diagnostic tool to detect electrode flooding in proton-exchange-membrane fuel cells, AIChE J. 49 (2003) 3221–3228. https://doi.org/10.1002/aic.690491221
[13] W. He, J.S. Yi, T. Van Nguyen, Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields, AIChE J. 46 (2000) 2053–2064. https://doi.org/10.1002/aic.690461016
[14] H. Li, C. Song, J. Zhang, J. Zhang, Catalyst contamination in PEM fuel cells, in: PEM Fuel Cell Electrocatal. Catal. Layers Fundam. Appl., Springer London, London, 2008, pp. 331–354. https://doi.org/10.1007/978-1-84800-936-3_6
[15] R.M. Darling, J.P. Meyers, Mathematical Model of Platinum Movement in PEM Fuel Cells, J. Electrochem. Soc. 152 (2005) A242–A247. https://doi.org/10.1149/1.1836156
[16] K.A. Page, B.W. Rowe, An Overview of Polymer Electrolyte Membranes for Fuel Cell Applications, in: ACS Symp. Ser., 2012: pp. 147–164. https://doi.org/10.1021/bk-2012-1096.ch009
[17] I. Dinçer, C. Zamfirescu, Sustainable energy systems and applications, in: Springer, Springer, 2011: p. 816
[18] J.H. Wee, Applications of proton exchange membrane fuel cell systems, Renew. Sustain. Energy Rev. 11 (2007) 1720–1738. https://doi.org/10.1016/j.rser.2006.01.005
[19] S. Satyapal, Hydrogen and Fuel Cells Overview, U.S. Dep. Energy Fuel Cell Technol. Off. (2017) 39
[20] American Institute of Chemical Engineers., 2004 AIChE Spring National Meeting : conference proceedings, New Orleans.04., in: AIChE, New York :, 2004
[21] R. Sood, S. Cavaliere, D.J. Jones, J. Rozière, Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes, Nano Energy. 26 (2016) 729–745. https://doi.org/10.1016/j.nanoen.2016.06.027
[22] T. Maiyalagan, V.S. Saji, Electrocatalysts for low temperature fuel cells : fundamentals and recent trends, 2017
[23] I. Nitta, Inhomogeneous Compression of pemfc gas diffusion layers, Helsinki University of TechnologyFaculty of Information and Natural Sciences, 2008
[24] L. Cindrella, A.M. Kannan, J.F. Lin, K. Saminathan, Y. Ho, C.W. Lin, J. Wertz, Gas diffusion layer for proton exchange membrane fuel cells—A review, J. Power Sources. 194 (2009) 146–160. https://doi.org/10.1016/j.jpowsour.2009.04.005
[25] G. Sivasubramanian, K. Hariharasubramanian, P. Deivanayagam, J. Ramaswamy, High-performance SPEEK/SWCNT/fly ash polymer electrolyte nanocomposite membranes for fuel cell applications, Polym. J. 49 (2017) 703–709. https://doi.org/10.1038/pj.2017.38
[26] V.M.O. Martínez, M.J.S. García, F.J.H. Fernández, A. Pérez de los Ríos, Organic–inorganic membranes impregnated with ionic liquid, in: Org. Compos. Polym. Electrolyte Membr., Springer International Publishing, Cham, (2017)1–23. https://doi.org/10.1007/978-3-319-52739-0_1
[27] Colleen Spiegel, Low-temperature fuel cell membrane electrode assembly processing techniques, (2017)
[28] M. Aliofkhazraei, N. Ali, W.I. (William I.. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni, Graphene science handbook. Applications and industrialization, 2016
[29] A. Kraytsberg, Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy & Fuels. 28 (2014) 7303–7330. https://doi.org/10.1021/ef501977k
[30] C. Wang, S. Wang, L. Peng, J. Zhang, Z. Shao, J. Huang, C. Sun, M. Ouyang, X. He, Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications, Energies. 9 (2016) 603. https://doi.org/10.3390/en9080603
[31] Rafi-Ud-Din, M. Arshad, A. Saleem, M. Shahzad, T. Subhani, S. Hussain, Fabrication and characterization of bipolar plates of vinyl ester resin/graphite-based composite for polymer electrolyte membrane fuel cells, J. Thermoplast. Compos. Mater. 29 (2016) 1315–1331. https://doi.org/10.1177/0892705714563124
[32] B. Jiang, C. Li, The Synthesis and the Catalytic properties of graphene-based composite materials, in: carbon-related mater. recognit. Nobel Lect. by Prof. Akira Suzuki ICCE, Springer International Publishing, Cham, 2017: pp. 3–26. https://doi.org/10.1007/978-3-319-61651-3_1
[33] A. Masand, M. Borah, A.K. Pathak, S.R. Dhakate, Effect of filler content on the properties of expanded- graphite-based composite bipolar plates for application in polymer electrolyte membrane fuel cells, Mater. Res. Express. 4 (2017) 095604. https://doi.org/10.1088/2053-1591/aa85a5
[34] P. Lettenmeier, R. Wang, R. Abouatallah, B. Saruhan, O. Freitag, P. Gazdzicki, T. Morawietz, R. Hiesgen, A.S. Gago, K.A. Friedrich, Low-cost and durable bipolar plates for proton exchange membrane electrolyzers, Sci. Rep. 7 (2017) 44035. https://doi.org/10.1038/srep44035
[35] H. Kahraman, I. Cevik, F. Dündar, F. Ficici, The Corrosion resistance behaviors of metallic bipolar plates for pemfc coated with physical vapor deposition (PVD): an experimental study, Arab. J. Sci. Eng. 41 (2016) 1961–1968. https://doi.org/10.1007/s13369-016-2058-x
[36] J. Jang, C. Choi, J. Kim, Y.-D. Park, N. Kang, Y.S. Choi, D.G. Nam, Surface characterization of chromium nitrided low carbon steel as bipolar plate for polymer electrolyte membrane fuel cell, Sci. Adv. Mater. 10 (2018) 206–209. https://doi.org/10.1166/sam.2018.2952
[37] Y. Wang, S. Zhang, Z. Lu, P. Wang, X. Ji, W. Li, Preparation and performance of electrically conductive Nb-doped TiO 2 /polyaniline bilayer coating for 316L stainless steel bipolar plates of proton-exchange membrane fuel cells, RSC Adv. 8 (2018) 19426–19431. https://doi.org/10.1039/C8RA02161A
[38] S. Jang, Y.G. Yoon, Y.S. Lee, Y.W. Choi, One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells, J. Memb. Sci. 563 (2018) 896–902. https://doi.org/10.1016/J.MEMSCI.2018.06.060
[39] K. Pourzare, Y. Mansourpanah, S. Farhadi, Advanced nanocomposite membranes for fuel cell applications: a comprehensive review, Biofuel Res. J. 3 (2016) 496–513. https://doi.org/10.18331/BRJ2016.3.4.4
[40] Sigma-Aldrich, Nafion® perfluorinated membrane, Online Cat. (2016) 1
[41] M. Bodner, B. Cermenek, M. Rami, V. Hacker, The Effect of platinum electrocatalyst on membrane degradation in polymer electrolyte fuel cells, Membranes (Basel). 5 (2015) 888–902. https://doi.org/10.3390/membranes5040888
[42] X. Li, Y. Song, Z. Liu, P. Feng, S. Liu, Y. Yu, Z. Jiang, B. Liu, Triple-layer sulfonated poly(ether ether ketone)/sulfonated polyimide membranes for fuel cell applications, High Perform. Polym. 26 (2014) 106–113. https://doi.org/10.1177/0954008313499803
[43] H. Yang, H. Wu, X. Shen, Y. Cao, Z. Li, Z. Jiang, Enhanced proton conductivity of proton exchange membrane at low humidity based on poly(methacrylic acid)-loaded imidazole microcapsules, RSC Adv. 5 (2015) 9079–9088. https://doi.org/10.1039/C4RA13616K
[44] S. Banerjee, Handbook of Specialty Fluorinated Polymers, Elsevier, 2015. https://doi.org/10.1016/C2014-0-01271-3
[45] H. Pu, Polymers for PEM Fuel Cells, John Wiley & Sons, Inc., Hoboken, New Jersey, New Jersey, 2014. https://doi.org/10.1002/9781118869345
[46] K.I. Ozoemena, Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications, RSC Adv. 6 (2016) 89523–89550. https://doi.org/10.1039/C6RA15057H
[47] T. Asset, Hollow nanoparticles for low cost, high oxygen reduction reaction activity and durability for proton exchange membrane fuel cell application, Université de Liège, Liège, Belgique, 2017
[48] X. Deng, S. Yin, X. Wu, M. Sun, Z. Xie, Q. Huang, Synthesis of PtAu/TiO2 nanowires with carbon skin as highly active and highly stable electrocatalyst for oxygen reduction reaction, Electrochim. Acta. 283 (2018) 987–996. https://doi.org/10.1016/j.electacta.2018.06.139
[49] L. Cao, G. Zhang, W. Lu, X. Qin, Z. Shao, B. Yi, Preparation of hollow PtCu nanoparticles as high-performance electrocatalysts for oxygen reduction reaction in the absence of a surfactant, RSC Adv. 6 (2016) 39993–40001. https://doi.org/10.1039/C6RA04619C
[50] P. Chandran, A. Ghosh, S. Ramaprabhu, High-performance platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell, Sci. Rep. 8 (2018) 3591. https://doi.org/10.1038/s41598-018-22001-9
[51] S.M. Alia, C. Ngo, S. Shulda, M.-A. Ha, A.A. Dameron, J.N. Weker, K.C. Neyerlin, S.S. Kocha, S. Pylypenko, B.S. Pivovar, Exceptional oxygen reduction reaction activity and durability of platinum–nickel nanowires through synthesis and post-treatment optimization, ACS Omega. 2 (2017) 1408–1418. https://doi.org/10.1021/acsomega.7b00054
[52] H. Wang, R. Liu, Y. Li, X. Lü, Q. Wang, S. Zhao, K. Yuan, Z. Cui, X. Li, S. Xin, R. Zhang, M. Lei, Z. Lin, Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction, Joule. 2 (2018) 337–348. https://doi.org/10.1016/j.joule.2017.11.016
[53] N. Lindahl, E. Zamburlini, L. Feng, H. Grönbeck, M. Escudero-Escribano, I.E.L. Stephens, I. Chorkendorff, C. Langhammer, B. Wickman, High specific and mass activity for the oxygen reduction reaction for thin film catalysts of sputtered Pt 3Y, Adv. Mater. Interfaces. 4 (2017) 1700311. https://doi.org/10.1002/admi.201700311
[54] S. Lee, S. Mukerjee, E. Ticianelli, J. McBreen, Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, Electrochim. Acta. 44 (1999) 3283–3293. https://doi.org/10.1016/S0013-4686(99)00052-3
[55] Y. Shao, G. Yin, Y. Gao, P. Shi, Durability Study of Pt∕C and Pt∕CNTs catalysts under simulated pem fuel cell conditions, J. Electrochem. Soc. 153 (2006) A1093. https://doi.org/10.1149/1.2191147
[56] X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, J. Power Sources. 158 (2006) 154–159. https://doi.org/10.1016/J.JPOWSOUR.2005.09.039
[57] L. Guo, W.J. Jiang, Y. Zhang, J.S. Hu, Z.D. Wei, L.J. Wan, Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction, ACS Catal. 5 (2015) 2903–2909. https://doi.org/10.1021/acscatal.5b00117
[58] L.S. Zhang, X.Q. Liang, W.G. Song, Z.Y. Wu, Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell, Phys. Chem. Chem. Phys. 12 (2010) 12055. https://doi.org/10.1039/c0cp00789g
[59] A. Pullamsetty, M. Subbiah, R. Sundara, Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells, Int. J. Hydrogen Energy. 40 (2015) 10251–10261. https://doi.org/10.1016/J.IJHYDENE.2015.06.020
[60] M.A. Hoque, F.M. Hassan, D. Higgins, J.-Y. Choi, M. Pritzker, S. Knights, S. Ye, Z. Chen, Multigrain Platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst, Adv. Mater. 27 (2015) 1229–1234. https://doi.org/10.1002/adma.201404426
[61] G. Girishkumar, T.D. Hall, K. Vinodgopal, Prashant V. Kamat, Single wall carbon nanotube supports for portable direct methanol fuel cells, (2005). https://doi.org/10.1021/JP054764I
[62] I. González-González, C. Lorenzo-Medrano, C.R. Cabrera, Sequential electrodeposition of platinum-ruthenium at boron-doped diamond electrodes for methanol oxidation, Adv. Phys. Chem. 2011 (2011) 1–10. https://doi.org/10.1155/2011/679246
[63] S. Park, Y. Shao, H. Wan, P.C. Rieke, V. V. Viswanathan, S.A. Towne, L. V. Saraf, J. Liu, Y. Lin, Y. Wang, Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells, Electrochem. Commun. 13 (2011) 258–261. https://doi.org/10.1016/J.ELECOM.2010.12.028
[64] H. Lv, S. Mu, N. Cheng, M. Pan, Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon, Appl. Catal. B Environ. 100 (2010) 190–196. https://doi.org/10.1016/J.APCATB.2010.07.030
[65] S. von Kraemer, K. Wikander, G. Lindbergh, A. Lundblad, A.E.C. Palmqvist, Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell, J. Power Sources. 180 (2008) 185–190. https://doi.org/10.1016/J.JPOWSOUR.2008.02.023
[66] F.D. Kong, S. Zhang, G.P. Yin, N. Zhang, Z.B. Wang, C.Y. Du, Preparation of Pt/Irx(IrO2)10 − x bifunctional oxygen catalyst for unitized regenerative fuel cell, J. Power Sources. 210 (2012) 321–326. https://doi.org/10.1016/J.JPOWSOUR.2012.02.021
[67] D.Y. Chung, H. Kim, Y.-H. Chung, M.J. Lee, S.J. Yoo, A.D. Bokare, W. Choi, Y.E. Sung, Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell., Sci. Rep. 4 (2014) 7450. https://doi.org/10.1038/srep07450
[68] Y. Nabae, S. Nagata, T. Hayakawa, H. Niwa, Y. Harada, M. Oshima, A. Isoda, A. Matsunaga, K. Tanaka, T. Aoki, Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion, Sci. Rep. 6 (2016) 23276. https://doi.org/10.1038/srep23276
[69] N.V. Long, C.M. Thi, Y. Yong, M. Nogami, M. Ohtaki, Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells, J. Nanosci. Nanotechnol. 13 (2013) 4799–824
[70] S. Kaushal, P. Negi, A.K. Sahu, S.R. Dhakate, Upshot of natural graphite inclusion on the performance of porous conducting carbon fiber paper in a polymer electrolyte membrane fuel cell, Mater. Res. Express. 4 (2017) 095603. https://doi.org/10.1088/2053-1591/aa8517
[71] R.C.T. Slade, J.P. Kizewski, S.D. Poynton, R. Zeng, J.R. Varcoe, Alkaline membrane fuel cells, in: Fuel Cells, Springer New York, NY, 2013: pp. 9–29. https://doi.org/10.1007/978-1-4614-5785-5_2
[72] V.K. Mathur, J. Crawford, Fundamentals of gas diffusion layers in pem fuel cells, in: Recent Trends Fuel Cell Sci. Technol., Springer New York, NY, 2007: pp. 116–128. https://doi.org/10.1007/978-0-387-68815-2_4
[73] K.M. Tenny, V.S. Lakhanpal, R.P. Dowd, V. Yarlagadda, T. Van Nguyen, Impact of multi-walled carbon nanotube fabrication on carbon cloth electrodes for hydrogen-vanadium reversible fuel cells, J. Electrochem. Soc. 164 (2017) A2534–A2538. https://doi.org/10.1149/2.1151712jes
[74] A.A. Rashad, E.A. Rashad, A.A. Ali, E. Akram, M.M. Al-rubaye, E. Yousif, N. Hairunisa, Hydrogen in fuel cells : An overview of promotions and demotions, Interdiscip. J. Chem. 2 (2017) 1–6. https://doi.org/10.15761/IJC.1000119
[75] D.M. Zhang, L. Guo, L.T. Duan, Z.Y. Wang, Preparation of multi-layer film on stainless steel as bipolar plate for polymer electrolyte membrane fuel cell, Adv. Mater. Res. 113–116 (2010) 2255–2261. https://doi.org/10.4028/www.scientific.net/AMR.113-116.2255
[76] Y. Suzuki, M. Watanabe, T. Toda, T. Fujii, Development of electrically conductive DLC coated stainless steel separators for polymer electrolyte membrane fuel cell, J. Phys. Conf. Ser. 441 (2013) 012027. https://doi.org/10.1088/1742-6596/441/1/012027
[77] X. Chen, Z. Zhang, J. Shen, Z. Hu, Micro direct methanol fuel cell: functional components, supplies management, packaging technology and application, Int. J. Energy Res. 41 (2017) 613–627. https://doi.org/10.1002/er.3634
[78] X. Li, A. Faghri, Review and advances of direct methanol fuel cells (DMFCs) part I: Design, fabrication, and testing with high concentration methanol solutions, J. Power Sources. 226 (2013) 223–240. https://doi.org/10.1016/J.JPOWSOUR.2012.10.061
[79] M.A. Abdelkareem, N. Morohashi, N. Nakagawa, Factors affecting methanol transport in a passive DMFC employing a porous carbon plate, J. Power Sources. 172 (2007) 659–665. https://doi.org/10.1016/J.JPOWSOUR.2007.05.015
[80] S. Eccarius, F. Krause, K. Beard, C. Agert, Passively operated vapor-fed direct methanol fuel cells for portable applications, J. Power Sources. 182 (2008) 565–579. https://doi.org/10.1016/J.JPOWSOUR.2008.03.091
[81] V.S. Bagotzky, Y.B. Vassiliev, O.A. Khazova, Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals, J. Electroanal. Chem. Interfacial Electrochem. 81 (1977) 229–238. https://doi.org/10.1016/S0022-0728(77)80019-3
[82] G. Yang, Y. Sun, P. Lv, F. Zhen, X. Cao, X. Chen, Z. Wang, Z. Yuan, X. Kong, Preparation of Pt–Ru/C as an Oxygen-reduction electrocatalyst in microbial fuel cells for wastewater treatment, Catalysts. 6 (2016) 150. https://doi.org/10.3390/catal6100150
[83] K. Hengge, T. Gänsler, E. Pizzutilo, C. Heinzl, M. Beetz, K.J.J. Mayrhofer, C. Scheu, Accelerated fuel cell tests of anodic Pt/Ru catalyst via identical location TEM: New aspects of degradation behavior, Int. J. Hydrogen Energy. 42 (2017) 25359–25371. https://doi.org/10.1016/J.IJHYDENE.2017.08.108
[84] C. Li, R. Dai, R. Qi, X. Wu, J. Ma, Electrodeposition of Pt–Ru alloy electrocatalysts for direct methanol fuel cell, Int. J. Electrochem. Sci. 12 (2017) 2485–2494. https://doi.org/10.20964/2017.03.13
[85] D. Wu, K. Kusada, H. Kitagawa, Recent progress in the structure control of Pd-Ru bimetallic nanomaterials., Sci. Technol. Adv. Mater. 17 (2016) 583–596. https://doi.org/10.1080/14686996.2016.1221727
[86] M. Mehrpooya, M. Kheir Rouz, A. Nikfarjam, Optimum Design of the Flow-field channels and fabrication of a micro-pem fuel cell, Ind. Eng. Chem. Res. 54 (2015) 3640–3647. https://doi.org/10.1021/ie5049675
[87] L. Peng, P. Yi, X. Lai, Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells, Int. J. Hydrogen Energy. 39 (2014) 21127–21153. https://doi.org/10.1016/j.ijhydene.2014.08.113
[88] K.I. Sainan, N. Arsyad, M.E. Salleh, F. Mohamad, Development of 1:1 and 2:1 channel ratio bipolar plates (BPPs) for PEMFC, Appl. Mech. Mater. 799-800(2015)799–800 105–109. https://doi.org/10.4028/www.scientific.net/AMM.799-800.105
[89] R. Zeis, Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells, Beilstein J. Nanotechnol. 6 (2015) 68–83. https://doi.org/10.3762/bjnano.6.8
[90] J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, Ltd, West Sussex, England, England, 2003. https://doi.org/10.1002/9781118878330
[91] M. Wen, K. He, P. Li, L. Yang, L. Deng, F. Jiang, Y. Yao, Optimization design of bipolar plate flow field in PEM stack, in: IOP Conf. Ser. Mater. Sci. Eng. (2017)012148. https://doi.org/10.1088/1757-899X/274/1/012148
[92] M. Kim, C. Kim, Y. Sohn, Application of metal foam as a flow field for PEM fuel cell stack, Fuel Cells. 18 (2018) 123–128. https://doi.org/10.1002/fuce.201700180
[93] E. Afshari, M. Ziaei-Rad, N. Jahantigh, Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux, Mod. Phys. Lett. B. 30 (2016) 1650155–71. https://doi.org/10.1142/S0217984916501554
[94] T. Chen, S. Liu, S. Gong, C. Wu, Development of bipolar plates with different flow channel configurations based on plant vein for fuel cell, Int. J. Energy Res. 37 (2013) 1680–1688. https://doi.org/10.1002/er.3033
[95] G. Zhang, L. Guo, B. Ma, H. Liu, Comparison of current distributions in proton exchange membrane fuel cells with interdigitated and serpentine flow fields, J. Power Sources. 188 (2009) 213–219. https://doi.org/10.1016/J.JPOWSOUR.2008.10.074
[96] S.G. Kandlikar, Z. Lu, Thermal management issues in a PEMFC stack – A brief review of current status, Appl. Therm. Eng. 29 (2009) 1276–1280. https://doi.org/10.1016/J.APPLTHERMALENG.2008.05.009
[97] D. Watzenig, B. Brandstätter, Comprehensive energy management : safe adaptation, predictive control and thermal management, Springer, 2018
[98] A.S. Aricò, V. Baglio, F. Lufrano, A. Stassi, I. Gatto, V. Antonucci, L. Merlo, Modifications of sulfonic acid-based membranes, in: High Temp. Polym. Electrolyte Membr. Fuel Cells, Springer International Publishing, Cham, 2016, pp. 5–36. https://doi.org/10.1007/978-3-319-17082-4_2
[99] J.Y. Hwang, K.Y. Shin, S.H. Lee, K. Kang, H. Kang, J.H. Lee, D.H. Peck, D.H. Jung, J.H. Jang, Periodic fuel supply to a micro-DMFC using a piezoelectric linear actuator, J. Micromechanics Microengineering. 20 (2010) 085023-30. https://doi.org/10.1088/0960-1317/20/8/085023
[100] B. Andreaus, A.J. McEvoy, G.G. Scherer, Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy, Electrochim. Acta. 47 (2002) 2223–2229. https://doi.org/10.1016/S0013-4686(02)00059-2
[101] D. Wang, H.L. Xin, Y. Yu, H. Wang, E. Rus, D.A. Muller, H.D. Abruña, Pt-Decorated PdCo@Pd/C core−shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction, J. Am. Chem. Soc. 132 (2010) 17664–17666. https://doi.org/10.1021/ja107874u
[102] D. Nag, S.K. Paul, S. Saha, A.K. Goswami, Sustainability assessment for the transportation environment of Darjeeling, India, J. Environ. Manage. 213 (2018) 489–502. https://doi.org/10.1016/J.JENVMAN.2018.01.042
[103] D.L. Greene, Sustainable transportation, in: Int. Encycl. Soc. Behav. Sci. Second Ed., Elsevier, 2015,pp. 845–849. https://doi.org/10.1016/B978-0-08-097086-8.91073-0
[104] R. Gerike, C. Koszowski, Sustainable urban transportation, in: Encycl. Sustain. Technol., Elsevier, 2017,pp. 379–391. https://doi.org/10.1016/B978-0-12-409548-9.10176-9
[105] T. Lipman, D. Sperling, Market concepts, competing technologies and cost challenges for automotive and stationary applications, in: Handb. Fuel Cells, John Wiley & Sons, Ltd, Chichester, UK, UK, 2010,pp. 3345. https://doi.org/10.1002/9780470974001.f313110
[106] Alstom fuel cell trains enter service in Germany, Fuel Cells Bull. 2018 (2018) 1. https://doi.org/10.1016/S1464-2859(18)30310-9
[107] H.S. Das, C.W. Tan, A.H.M. Yatim, Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies, Renew. Sustain. Energy Rev. 76 (2017) 268–291. https://doi.org/10.1016/j.rser.2017.03.056
[108] W.C. II, G. Cooke, Smart green cities: Toward a Carbon Neutral World, 2016
[109] K. Haraldsson, A. Folkesson, P. Alvfors, Fuel cell buses in the Stockholm CUTE project—First experiences from a climate perspective, J. Power Sources. 145 (2005) 620–631. https://doi.org/10.1016/j.jpowsour.2004.12.081
[110] Statoil, Volvo link up to push truck fuel cell APUs, Fuel Cells Bull. 2005 (2005) 1. https://doi.org/10.1016/S1464-2859(05)70663-5
[111] SGL, Hyundai expand cooperation in fuel cell components for NEXO, Fuel Cells Bull. 2018 (2018) 15. https://doi.org/10.1016/S1464-2859(18)30182-2
[112] Honda begins Clarity Fuel Cell deliveries in Europe, California, Fuel Cells Bull. 2017 (2017) 2. https://doi.org/10.1016/S1464-2859(17)30002-0
[113] Toyota tech in fuel cell buses for Caetanobus, Japan rail partnership, Fuel Cells Bull. 2018 (2018) 2. https://doi.org/10.1016/S1464-2859(18)30351-1
[114] Daimler launches next-generation hybrid fuel cell bus, Fuel Cells Bull. 2009 (2009) 2–3. https://doi.org/10.1016/S1464-2859(09)70239-1
[115] J.W. Richmond, A Tata motors perspective for sustainable transportation and the development of the Tata Vista EV, Innov. Fuel Econ. Sustain. Road Transp. (2011) 47–60. https://doi.org/10.1533/9780857095879.1.47
[116] P.Motor, Skoda electric launch first triple-hybrid fuel cell passenger bus, Fuel Cells Bull. 2009 (2009) 1. https://doi.org/10.1016/S1464-2859(09)70101-4
[117] M. Pein, Fuel cells ideal for demanding maritime applications, Fuel Cells Bull. 2012 (2012) 14–15. https://doi.org/10.1016/S1464-2859(12)70184-0
[118] Yamaha demos fuel cell scooters, links with Yuasa, Fuel Cells Bull. 2003 (2003) 2. https://doi.org/10.1016/S1464-2859(03)00904-0
[119] S. Zhang, Y. Zhang, J. Chen, C. Yin, X. Liu, Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use, J. Power Sources. 389 (2018) 37–49. https://doi.org/10.1016/J.JPOWSOUR.2018.04.009
[120] Y.J. Sohn, G.G. Park, T.H. Yang, Y.G. Yoon, W.Y. Lee, S.D. Yim, C.S. Kim, Operating characteristics of an air-cooling PEMFC for portable applications, J. Power Sources. 145 (2005) 604–609. https://doi.org/10.1016/J.JPOWSOUR.2005.02.062
[121] Samsung SDI develops military portable DMFC, Fuel Cells Bull. 2009 (2009) 6–7. https://doi.org/10.1016/S1464-2859(09)70182-8
[122] NEC, Toshiba, and Sony developing ever-smaller fuel cells to replace batteries, Focus Catal. 2003 (2003) 2. https://doi.org/10.1016/S1351-4180(03)00003-5
[123] N.R.C. and N.A. of Engineering, The Hydrogen Economy, National Academies Press, Washington, D.C. 2004. https://doi.org/10.17226/10922
[124] A. Higier, L. Hsu, J. Oiler, A. Phipps, D. Hooper, M. Kerber, Polymer electrolyte fuel cell (PEMFC) based power system for long-term operation of leave-in-place sensors in Navy and Marine Corps applications, Int. J. Hydrogen Energy. 42 (2017) 4706–4709. https://doi.org/10.1016/J.IJHYDENE.2016.09.066
[125] Horizon Fuel Cell in global climate change education initiative, Fuel Cells Bull. 2012 (2012) 9. https://doi.org/10.1016/S1464-2859(12)70107-4
[126] Toshiba Launches Direct Methanol Fuel Cell in Japan as External Power Source for Mobile Electronic Devices, Green Car Congr. (2009)
[127] Neah Power offers fuel cell manufacturing license to customers, Fuel Cells Bull. 2011 (2011) 9. https://doi.org/10.1016/S1464-2859(11)70349-2
[128] Global Direct Methanol Fuel Cells Market Report 2016-2020 – Analysis, Technologies & Forecasts – Vendors: DuPont Fuel Cell, Hitachi, Panasonic – Research and Markets, BusinessWire. (2016)
[129] O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev. 32 (2014) 810–853. https://doi.org/10.1016/J.RSER.2014.01.012
[130] T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, Advances in stationary and portable fuel cell applications, Int. J. Hydrogen Energy. 41 (2016) 16509–16522. https://doi.org/10.1016/J.IJHYDENE.2016.02.057
[131] B. Sundén, J. Fu, B. Sundén, J. Fu, Fuel Cells, Heat Transf. Aerosp. Appl. (2017) 145–153. https://doi.org/10.1016/B978-0-12-809760-1.00008-9
[132] Ballard supplies stacks to Infintium to power materials handling at Mercedes-Benz in US, Fuel Cells Bull. 2019 (2019) 3. https://doi.org/10.1016/S1464-2859(19)30005-7
[133] 101 Telco Solutions offers fuel cell backup power from Altergy, Fuel Cells Bull. 2018 (2018) 7. https://doi.org/10.1016/S1464-2859(18)30365-1
[134] Z. Ma, J. Eichman, J. Kurtz, Fuel Cell Backup Power Unit Configuration and Electricity Market Participation: A Feasibility Study, Golden, CO (United States), 2017. https://doi.org/10.2172/1347197
[135] Nuvera fuel cell powers electrochemical industry, Fuel Cells Bull. 2006 (2006) 6. https://doi.org/10.1016/S1464-2859(06)71304-9
[136] SFC wins Bundeswehr order for vehicle-based and stationary power, Fuel Cells Bull. 2019 (2019) 12–13. https://doi.org/10.1016/S1464-2859(19)30029-X
[137] Toshiba hydrogen fuel cell system out to sea, builds hydrogen centre, Fuel Cells Bull. 2016 (2016) 4–5. https://doi.org/10.1016/S1464-2859(16)30342-X
[138] Acumentrics delivers 250+ SOFC units to remote power users, Fuel Cells Bull. 2015 (2015) 5. https://doi.org/10.1016/S1464-2859(15)30147-4
[139] Viaspace fuel cell cartridges for Samsung, Fuel Cells Bull. 2009 (2009) 6. https://doi.org/10.1016/S1464-2859(09)70117-8
[140] ElectroChem integrates fuel cell technology in India, South Asia, Fuel Cells Bull. 2007 (2007) 7. https://doi.org/10.1016/S1464-2859(07)70318-8
[141] M. Kodama, Innovation through boundary management—a case study in reforms at Matsushita electric, Technovation. 27 (2007) 15–29. https://doi.org/10.1016/J.TECHNOVATION.2005.09.006