Role of Trimetallic Nanoparticles for Complete Oxidation of Alcohol to CO2

$20.00

Role of Trimetallic Nanoparticles for Complete Oxidation of Alcohol to CO2

R. Imran Jafri, V. Acharya, S. Akshaya

The increasing demand of global energy and extensive use of fossil fuels have created enormous pressure for developing a new renewable energy source which is ultra clean, easily accessible, energy efficient and low cost, hence making way for fuel cells. Among different types of fuel cells, Direct Alcohol Fuel Cells (DAFC) has emerged as a promising technology which has the potential to replace the existing fossil fuel-based machinery. To overcome the various hurdles faced by the commercialization of fuel cells, multimetallic nanoparticles as catalysts have attracted huge attention compared to monometallic as the former can be easily tailored. The present chapter overviews the recent developments in the electrocatalysts (with focus on tri-metallic electrocatalysts) for alcohol (methanol and ethanol) oxidation and review of recent Pt and non-Pt based materials for the DAFC.

Keywords
Alcohol Oxidation, Fuel Cells, Nanomaterials, Electrocatalyst, Trimetallic Electrocatalysts, Carbon Nanomaterials

Published online 5/5/2019, 37 pages

Citation: R. Imran Jafri, V. Acharya, S. Akshaya, Role of Trimetallic Nanoparticles for Complete Oxidation of Alcohol to CO2, Materials Research Foundations, Vol. 49, pp 351-387, 2019

DOI: https://doi.org/10.21741/9781644900192-12

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1] A. K. Agrawal, J. Rangarajan, Electro-catalytic activity of nano-sized Pt-Ni bimetallic alloy particles supported on carbon for methanol electro-oxidation, Int. J. Scientific & Engineering Research. 5 (2014) 1544-1551
[2] E. Antolini, Pt-Ni and Pt-M-Ni (M = Ru, Sn) anode catalysts for low-temperature acidic direct alcohol fuel cells: A review, Energies. 10 (2017) 42. https://doi.org/10.3390/en10010042
[3] R.G.C.S. dos Reis, F. Colmati, Electrochemical alcohol oxidation: a comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles, J. Solid State Electrochem. 20 (2016) 2559–2567. https://doi.org/10.1007/s10008-016-3323-3
[4] H.R. Corti, E.R. Gonzalez, Introduction to direct alcohol fuel cells, in: Direct alcohol fuel cells, Springer Netherlands, Dordrecht, 2014, pp. 1–32. https://doi.org/10.1007/978-94-007-7708-8_1
[5] C. Lamy, E.M. Belgsir, J.M. Léger, Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC), J. Appl Electrochem. 31 (2001) 799–809. https://doi.org/10.1023/A:1017587310150
[6] M.C. Figueiredo, R.M. Arán-Ais, J.M. Feliu, K. Kontturi, T. Kallio, Pt catalysts modified with Bi: Enhancement of the catalytic activity for alcohol oxidation in alkaline media, J. Catal. 312 (2014) 78–86. https://doi.org/10.1016/J.JCAT.2014.01.010
[7] B. McNicol, D.A. Rand, K. Williams, Direct methanol-air fuel cells for road transportation, J. Power Sources. 83 (1999) 15–31. https://doi.org/10.1016/S0378-7753(99)00244-X
[8] S. Zhao, H. Yin, L. Du, G. Yin, Z. Tang, S. Liu, Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells, J. Mater. Chem.A. 2 (2014) 3719–3724. https://doi.org/10.1039/c3ta14809b
[9] J. Tayal, B. Rawat, S. Basu, Bi-metallic and tri-metallic Pt-Sn/C, Pt-Ir/C, Pt-Ir-Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell, Int. J. Hydrogen Energ. 36 (2011) 14884–14897. https://doi.org/10.1016/j.ijhydene.2011.03.035
[10] H. Liu, J. Li, L. Wang, Y. Tang, B.Y. Xia, Y. Chen, Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation, Nano Research. 10 (2017) 3324–3332. https://doi.org/10.1007/s12274-017-1545-z
[11] O. Ugalde-Reyes, R. Hernández-Maya, A.L. Ocampo-Flores, F.A.- Ramírez, E. Sosa-Hernández, C. Angeles-Chavez, P. Roquero, Study of the electrochemical activities of Mo-modified pt catalysts, for application as anodes in direct methanol fuel cells: Effect of the aggregation route, J. Electrochem. Soc. 162 (2015) H132–H141. https://doi.org/10.1149/2.0521503jes
[12] Q. He, Y. Shen, K. Xiao, J. Xi, X. Qiu, Alcohol electro-oxidation on platinum–ceria/graphene nanosheet in alkaline solutions, Int. J. Hydrogen Energ.. 41 (2016) 20709–20719. https://doi.org/10.1016/J.IJHYDENE.2016.07.205
[13] N. Rajalakshmi, R. Imran Jafri, K.S. Dhathathreyan, Research advancements in low-temperature fuel cells, in: Electrocatalysts for low temperature fuel cells, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017, pp. 35–74. https://doi.org/10.1002/9783527803873.ch2
[14] DoE, Fuel cell technologies office multiyear research, development and demonstration plan, Doe. (2016)1–58. https://www.energy.gov/sites/prod/files/2016/06/f32/fcto_myrdd_fuel_cells_0.pdf (accessed 23 December 2018)
[15] S.D. Fritts, R.K. Sen, Assessment of methanol electro-oxidation for direct methanol-air fuel cells, Richland, WA (United States), 1988. https://doi.org/10.2172/7129968
[16] D.S. Cameron, G.A. Hards, B. Harrison, R.J. Potter, Direct methanol fuel cells: Recent developments in the search for improved performance, Platin. Met. Rev. 31 (1987) 173–181
[17] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim.Acta. 47 (2002) 3663–3674. https://doi.org/10.1016/S0013-4686(02)00336-5
[18] Y. Wang, S. Zou, W.-B. Cai, Y. Wang, S. Zou, W.-B. Cai, Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials, Catalysts. 5 (2015) 1507–1534. https://doi.org/10.3390/catal5031507
[19] L. An, T.S. Zhao, Y.S. Li, Carbon-neutral sustainable energy technology: Direct ethanol fuel cells, Renew.Sustain.Energ.Rev. 50 (2015) 1462–1468. https://doi.org/10.1016/J.RSER.2015.05.074
[20] A.R. Khade, Fuel cell technologies and applications, Int. J. Sci. Res. 3 (2014) 978–982
[21] K.I. Ozoemena, Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications, RSC Adv. 6 (2016) 89523–89550. https://doi.org/10.1039/C6RA15057H
[22] C. Lamy, C. Coutanceau, Electrocatalysis of alcohol oxidation reactions at platinum group metals, in: Catalysts for alcohol-fuelled direct oxidation fuel cells, 2012,pp. 1–70. https://doi.org/10.1039/9781849734783-00001
[23] A. Dutta, S.S. Mahapatra, J. Datta, High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications, Int. J. Hydrogen Energ.. 36 (2011) 14898–14906. https://doi.org/10.1016/J.IJHYDENE.2011.02.101
[24] E.H. Yu, X. Wang, U. Krewer, L. Li, K. Scott, Direct oxidation alkaline fuelcells: from materials to systems, Energ.Environ. Sci. 5 (2012) 5668–5680. https://doi.org/10.1039/C2EE02552C
[25] E.H. Yu, U. Krewer, K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells, Energies. 3 (2010) 1499–1528. https://doi.org/10.3390/en3081499
[26] S.S. Munjewar, S.B. Thombre, R.K. Mallick, A comprehensive review on recent material development of passive direct methanol fuel cell, Ionics. 23 (2017) 1–18. https://doi.org/10.1007/s11581-016-1864-1
[27] B. Singh, L. Murad, F. Laffir, C. Dickinson, E. Dempsey, Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media, Nanoscale. 3 (2011) 3334–3349. https://doi.org/10.1039/c1nr10273g
[28] A. Kongkanand, N.P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D.A. Muller, Achieving high-power PEM fuel cell performance with an ultralow-pt-content core–shell catalyst, ACS Catal. 6 (2016) 1578–1583. https://doi.org/10.1021/acscatal.5b02819
[29] M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity, Nano Letters. 11 (2011) 3714–3719. https://doi.org/10.1021/nl2017459
[30] M.C. Figueiredo, J. Solla-Gullón, F.J. Vidal-Iglesias, M. Nisula, J.M. Feliu, T. Kallio, Carbon-supported shape-controlled Pt nanoparticle electrocatalysts for direct alcohol fuel cells, Electrochem.Comm. 55 (2015) 47–50. https://doi.org/10.1016/j.elecom.2015.03.019
[31] M. Liu, R. Zhang, W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications, Chem.Rev. 114 (2014) 5117–5160. https://doi.org/10.1021/cr400523y
[32] M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature. 486 (2012) 43–51. https://doi.org/10.1038/nature11115
[33] C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells, Energ.Environ. Sci. 4 (2011) 1161–1176. https://doi.org/10.1039/C0EE00197J
[34] W. Zhou, B. Zhou, W. Li, Z. Zhou, S. Song, G. Sun, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras, Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts, J. Power Sources. 126 (2004) 16–22. https://doi.org/10.1016/j.jpowsour.2003.08.009
[35] J. Tayal, B. Rawat, S. Basu, Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell, Int. J. Hydrogen Energ. 37 (2012) 4597–4605. https://doi.org/10.1016/J.IJHYDENE.2011.05.188
[36] X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Recent advances in catalysts for direct methanol fuel cells, Energ.Environ. Sci. 4 (2011) 2736–2753. https://doi.org/10.1039/c1ee01307f
[37] W. Zhou, Pt based anode catalysts for direct ethanol fuel cells, Appl. Catal.B.Environ. 46 (2003) 273–285. https://doi.org/10.1016/S0926-3373(03)00218-2
[38] W. Zhu, J. Ke, S.B. Wang, J. Ren, H.H. Wang, Z.Y. Zhou, R. Si, Y.W. Zhang, C.-H. Yan, Shaping single-crystalline trimetallic Pt−Pd−Rh nanocrystals toward high-effciency C−C splitting of ethanol in conversion to CO2, ACS Catalysis. 5 (2015) 1995–2008. https://doi.org/10.1021/cs5018419
[39] C.J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala, R. Loukrakpam, S. Lim, B. Fang, Z. Xu, Fuel cell technology: Nano-engineered multimetallic catalysts, Energ.Environ. Sci.. 1 (2008) 454–466. https://doi.org/10.1039/b810734n
[40] Y.H. Chu, Y.G. Shul, Combinatorial investigation of Pt–Ru–Sn alloys as an anode electrocatalysts for direct alcohol fuel cells, Int. J. Hydrogen Energ. 35 (2010) 11261–11270. https://doi.org/10.1016/J.IJHYDENE.2010.07.062
[41] G. García, N. Tsiouvaras, E. Pastor, M.A. Peña, J.L.G. Fierro, M. V. Martínez-Huerta, Ethanol oxidation on PtRuMo/C catalysts: In situ FTIR spectroscopy and DEMS studies, Int. J. Hydrogen Energ. 37 (2012) 7131–7140. https://doi.org/10.1016/j.ijhydene.2011.11.031
[42] Z.B. Wang, G.P. Yin, Y.G. Lin, Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell, J. Power Sources. 170 (2007) 242–250. https://doi.org/10.1016/j.jpowsour.2007.03.078
[43] M. Li, A. Kowal, K. Sasaki, N. Marinkovic, D. Su, E. Korach, P. Liu, R.R. Adzic, Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios, Electrochim.Acta. 55 (2010) 4331–4338. https://doi.org/10.1016/J.ELECTACTA.2009.12.071
[44] X.H. Jian, D.S. Tsai, W.H. Chung, Y.S. Huang, F.J. Liu, Pt–Ru and Pt–Mo electrodeposited onto Ir–IrO2 nanorods and their catalytic activities in methanol and ethanol oxidation, J.Mater.Chem. 19 (2009) 1601–1607. https://doi.org/10.1039/b816255g
[45] E. Lee, A. Murthy, A. Manthiram, Effect of Mo addition on the electrocatalytic activity of Pt–Sn–Mo/C for direct ethanol fuel cells, Electrochim.Acta. 56 (2011) 1611–1618. https://doi.org/10.1016/j.electacta.2010.10.086
[46] M.C. Figueiredo, O. Sorsa, R.M. Arán-Ais, N. Doan, J.M. Feliu, T. Kallio, Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cells, J. Catal. 329 (2015) 69–77. https://doi.org/10.1016/j.jcat.2015.04.032
[47] K. Jiang, L. Bu, P. Wang, S. Guo, X. Huang, Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation, ACS Appl. Mater..Interfaces. 7 (2015) 15061–15067. https://doi.org/10.1021/acsami.5b04391
[48] L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su, Y.X. Tong, Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation, J.Am. Chem.Soc. 134 (2012) 5730–5733. https://doi.org/10.1021/ja212206m
[49] J. Goel, S. Basu, Pt-Re-Sn as Metal Catalysts for Electro-oxidation of ethanol in direct ethanol fuel cell, Energ.Procedia. 28 (2012) 66–77. https://doi.org/10.1016/J.EGYPRO.2012.08.041
[50] J.W. Hong, Y. Kim, D.H. Wi, S. Lee, S.U. Lee, Y.W. Lee, S.I. Choi, S.W. Han, Ultrathin free-standing ternary-alloy nanosheets, Angew. Chem. Int. Ed. 55 (2016) 2753–2758. https://doi.org/10.1002/anie.201510460
[51] G. Feng, Y. Kuang, P.S. Li, N.N. Han, M. Sun, G.X. Zhang, X.M. Sun, Single crystalline ultrathin nickel-cobalt alloy nanosheets array for direct hydrazine fuel cells, Adv.Sci. 4 (2017) 1600179. https://doi.org/10.1002/advs.201600179
[52] H. Dong, L. Dong, Electrocatalytic activity of carbon nanotube-supported Pt–Cr–Co tri-metallic nanoparticles for methanol and ethanol oxidations, J. Inorg. Organomet. Polymer. Mater. 21 (2011) 754–757. https://doi.org/10.1007/s10904-011-9526-2
[53] S. Ghosh, R. Basu, Electrochemistry of nanostructured materials: implementation in electrocatalysis for energy conversion applications, J. Indian Inst. Sci. 96 (2016) 293–313
[54] S. Sadeghi, H. Gharibi, F. Golmohammadi, Electrooxidation of ethanol and acetaldehyde using PtSn/C and PtSnO2/C catalysts prepared by a modified alcohol-reduction process, Scientia Iranica F. 22 (2015) 2729–2735. https://doi.org/10.13140/RG.2.1.1021.5288
[55] S. Basu, Proton Exchange membrane fuel cell technology: India’s perspective, Proceedings of the Indian National Science Academy. 81 (2015) 865–890. https://doi.org/10.16943/ptinsa/2015/v81i4/48301
[56] L. Giorgi, F. Leccese, Fuel cells: Technologies and applications, Open Fuel Cell J. 6 (2013) 1–20. https://doi.org/10.1161/01.RES.88.1.117
[57] W. Zhou, B. Zhou, W. Li, Z. Zhou, S. Song, G. Sun, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras, Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts, J. Power Sources. 126 (2004) 16–22. https://doi.org/10.1016/j.jpowsour.2003.08.009
[58] N.K. Shrivastava, S.B. Thombre, R.B. Chadge, Liquid feed passive direct methanol fuel cell: challenges and recent advances, Ionics. 22 (2016) 1–23. https://doi.org/10.1007/s11581-015-1589-6
[59] M.A. Zeb Gul Sial, M.A. Ud Din, X. Wang, Multimetallic nanosheets: synthesis and applications in fuel cells, Chem. Soc.Rev. 47 (2018) 6175–6200. https://doi.org/10.1039/C8CS00113H
[60] M.F. Hossain, J.Y. Park, Reduced graphene oxide sheets with added Pt-Pd alloy nanoparticles as a good electro-catalyst for ethanol oxidation, Int.J.Electrochem.Sci. 10 (2015) 6213–6226
[61] X. Cui, Y. Li, M. Zhao, Y. Xu, L. Chen, S. Yang, Y. Wang, Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electrooxidation, Nano Research.12(2019) 351–356. https://doi.org/10.1007/s12274-018-2222-6
[62] Y. Pan, M. Chen, S. Wu, Y. Li, D. Lu, H. Xu, W. Peng , L. Zhou, Development of a Highly Efficient 3D RuPdBi/NG Electrocatalyst for Ethylene Glycol Oxidation in an Alkaline Media, Int. J.Electrochem. Sci. 12 (2017) 11030 – 11041, https://doi.org/10.20964/2017.11.101
[63] S. Thilaga, S. Durga, V. Selvarani1, S. Kiruthika, B. Muthukumaran, Multiwalled carbon nanotube supported Pt–Sn–M (M = Ru, Ni, and Ir) catalysts for ethanol electrooxidation, Ionics. 24 (2018) 1721–1731.
[64] M. Priya, S. Kiruthika, B. Muthukuma, Synthesis and characterization of Pt–Sn–Ce/MC ternary catalysts for ethanol oxidation in membraneless fuel cells, Ionics.23 (2017) 1209–1218. https://doi.org/10.1007/s11581-016-1940-6
[65] H. Huang, X. Wang, Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells, J.Mater. Chem. A.2 (2014) 6266-6291. https://doi.org/ 10.1039/c3ta14754a
[66] L. Ma, H. He, A. Hsu, R. Chen, PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells, J. Power Sour. 241 (2013) 696-702. https://doi.org/10.1016/j.jpowsour.2013.04.051
[67] W. li, P. Haldar, SupportlessPdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell, Electrochem. Comm. 11 (2009) 1195–1198. https://doi.org/10.1016/j.elecom.2009.03.046
[68] A. O. Neto, R. R. Dias, M. M. Tusi, M. Linardi, E. V. Spinace, Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process, J. Power Sour. 166 (2007) 87–91. https://doi.org/ 10.1007/s11581-009-0396-3
[69] K. Bhunia, Santimoykhilari, D. Pradhan, Monodispersed PtPdNi Trimetallic Nanoparticles-Integrated Reduced Graphene Oxide Hybrid Platform for direct Alcohol Fuel Cell, ACS Sustain. Chem. Eng. 6 (2018) 7769-7778. https://doi.org/10.1021/acssuschemeng.8b00721.
[70] R. Wang, Y. Ma, H. Wang, J. S. Ji, Gas-liquid interface-mediated room-temperature synthesis of “clean” PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation, Chem. Comm.50 (2014) 12877-12879. https://doi.org/ 10.1039/c4cc06026a
[71] T. Li, Y. Huang, K. Ding, P. Wu, S. C. Abbas, M. A. Ghausi, P. Zhang, Y. Wang, Newly designed PdRuBi/N-Graphene catalyst with synergistic effects for enhanced ethylene glycol electro-oxidation, Electrochim.Acta.191 (2016) 940-945. https://doi.org/ 10.3390/catal7070208