Proton Transport and Design of Proton Electrolyte Membranes for Methanol Oxidation

$20.00

Proton Transport and Design of Proton Electrolyte Membranes for Methanol Oxidation

P.S. Kumar, S.K. Pal, R. Rajasekar, M.H. Kumar, A.M. Kumar

The fuel cell has been widely used in automobiles and has a bright future in our country. Fuel Cell development is making adequate progress in the direct methanol fuel cell (DMFC) discipline. This chapter explains the extent and trends of theoretical developments in the DMFC. This chapter identifies the scope for proton transport and design of PEM for methanol oxidation in DMFCs. It also highlights predominant theories, frameworks, and constructs that can be utilized by practitioners to improve their understanding of DMFCs, their ability to predict future scenarios and solve practical problems. This chapter will also play a significant role in the further development of DMFC discipline.

Keywords
Proton Transport, Methanol Oxidation, Proton Electrolyte Membranes, Direct Methanol Fuel Cell, Methanol Crossover

Published online 5/5/2019, 30 pages

Citation: P.S. Kumar, S.K. Pal, R. Rajasekar, M.H. Kumar, A.M. Kumar, Proton Transport and Design of Proton Electrolyte Membranes for Methanol Oxidation, Materials Research Foundations, Vol. 49, pp 321-350, 2019

DOI: https://doi.org/10.21741/9781644900192-11

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1] C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.W. Kim, T.W. Kim, M. Lee, D.S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, Y.M. Lee, Nanocrack-regulated self-humidifying membranes, Nature. 532 (2016) 480–483. https://doi.org/10.1038/nature17634
[2] K.S. Lee, J. S. Spendelow, Y.K. Choe, C. Fujimoto, Y. S. Kim, An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs, Nat. Energy. 1 (2016) 16120. https://doi.org/10.1038/nenergy.2016.120
[3] S. Surampudi, S.R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. Prakash, G.A. Olah, Advances in direct methanol fuel cells, J. Power Sources 47 (1994) 377. https://doi.org/10.1016/0378-7753(94)87016-0
[4] M. Winter, R.J. Brodd,What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245–4270. https://doi.org/10.1021/cr020730k
[5] F. Lufrano, V. Baglio, P. Staiti, V. Antonucci, A.S. Arico,Performance analysis of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources 243 (2013) 519-534. https://doi.org/10.1016/j.jpowsour.2013.05.180
[6] N.A. Hampson, M. J. Willars, B. D. McNicol,The methanol-air fuel cell: a selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes,J. Power Sources 4 (1979) 191. https://doi.org/10.1016/0378-7753(79)85010-7
[7] X. Ren, M.S. Wilson, S. Gottesfeld, J. Electrochem. Soc. 143 (1996) L12.
[8] Y.F. Huang, L.C. Chuang, A.M. Kannan, C.W. Lin, J. Power Sources 186 (2009) 22.
[9] Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, S. Nomura, Solid State Ionics 162/163 (2003) 237–245.
[10] C. Zhao, H. Lin, H. Na, Int. J. Hydrogen Energy 35 (2010) 2176–2182.
[11] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Chem. Rev. 104 (2004) 4587-4611.
[12] Chandan, M. Hattenberger, A. El-Kharouf, S.F. Du, A. Dhir, V. Self, B.G. Pollet, A. Ingram, W. Bujalski, J. Power Sources 231 (2013) 264-278. https://doi.org/10.1016/j.jpowsour.2012.11.126
[13] W.C. Choi, J.D. Kim, S.I. Woo, J. Power Sources 96 (2001) 411.
[14] Küver, W. Vielstich, J. Power Sources 74 (1998) 211.
[15] W.H.J. Hogarth, J.C. Diniz da Costa, G.Q. Lu, J. Power Sources 142 (2005) 223.
[16] P. Krishnan, J.S. Park, C.S. Kim, Eur. Polym. J. 43 (2007) 4019–4027.
[17] P. Dimitrova, Solid State Ionics 150 (2002) 115–22.
[18] L. Wang, Y.Z. Meng, S.J. Wang, X.Y. Shang, L. Li, A.S. Hay, Macromol. 37(2004) 3151–3158.
[19] D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, I. Cantero, Chem. Mater. 16 (2004) 604–607. https://doi.org/10.1021/cm034398k
[20] L. Wang, Y.Z. Meng, S.J. Wang, X.H. Li, M. Xiao, J. Polym. Sci. Part A: Polym. Chem. 43 (2005) 6411–6418.
[21] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine, Macromol. 37 (2004) 7960–7967.
[22] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine, Polym. 46 (2005) 3257–3263.
[23] F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, E. Passalacqua, Solid State Ionics 145 (2001) 47–51. https://doi.org/10.1016/s0167-2738(01)00912-2
[24] K. Okamoto, Y. Yin, O. Yamada, M.N. Islam, T. Honda, T. Mishima, Y. Suto, K.Tanaka, H. Kita, J. Membr. Sci. 258 (2005) 115–122.
[25] Y. Shang, X.F. Xie, H. Jin, J.W. Guo, Y.W. Wang, S.G. Feng, S.B. Wang, J.M. Xu, Eur. Polym. J. 42 (2006) 2987–2993.
[26] T. Watari, J.H. Fang, K. Tanaka, H. Kita, K. Okamoto, T. Hirano, J. Membr. Sci. 230 (2004) 111–120.
[27] Y.S. Choi, T.K. Kim, E.A. Kim, S.H. Joo, C. Pak, Y.H. Lee, Adv. Mater. 20 (2008) 2341-2344.
[28] C. Zhang, X.X. Guo, J.H. Fang, H.J. Xu, M.Q. Yuan, B.W. Chen, J. Power Sources. 170 (2007) 42.
[29] J.A. Kerres, J. Membr. Sci. 185 (2001) 3–27.
[30] D.J. Jones, J.J. Roziere, J. Membr. Sci., 185 (2001) 41–58.
[31] N. Carretta, V. Tricoli, F. Picchioni, J. Membr. Sci. 166 (2000) 189–197.
[32] G.Q. Wang, X.L. Zhu, S.H. Zhang, Y.F. Liang, X.G. Jian, Acta Polym. Sin. 2 (2006) 209–212.
[33] M. Gil, X.L. Ji, X.F. Li, H. Na, J.E. Hampsey, Y.F. Lu, J. Membr. Sci. 234 (2004) 75–81.
[34] P.X. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, J. Membr. Sci. 229 (2004) 95–106.
[35] S. Swier, Y.S. Chun, J. Gasa, M.T. Shaw, R.A. Weiss, Polym. Eng. Sci. 45 (2005) 1081–1091. https://doi.org/10.1002/pen.20361
[36] Y.S. Kim, M.A. Hickner, L.M. Dong, B.S. Pivovar, J.E. McGrath, J. Membr. Sci. 243 (2004) 317.
[37] D. Poppe, H. Frey, K.D. Kreuer, A. Heinzel, R. Mulhaupt, Macromol. 35 (2002) 7936–7941. https://doi.org/10.1021/ma012198t
[38] B.J. Liu, G.P. Robertson, M.D. Guiver, Y.M. Sun, Y.L. Liu, J.Y. Lai, S. Mikhailenko, S. Kaliaguine, J. Polym. Sci. Part B: Polym. Phys. 44 (2006) 2299. https://doi.org/10.1002/polb.20867
[39] Basu S (2007) Recent Trends in Fuel Cell Science and Technology, Springer, New York.
[40] Larminie and Dicks A Fuel Cell Systems Explained 2nd Ed., John Wiley, 2003,pp 145.
[41] J.Kerres, A Development of ionomer membranes for fuel cells, J. Membr. Sci. 185 (2001) 3-27.
[42] O.Savadogo, Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems, J. New. Mater. Electrochem. Syst. 1 (1998) 47-66. https://doi.org/10.1002/chin.199847334
[43] S.Malhotra,R.Datta, membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells, J. Electrochem. Soc. 144 (1997) 23-26. https://doi.org/10.1149/1.1837420
[44] Y.Daiko, L.C.Klein, T.Kasuga,M.Nogami, Hygroscopicoxides/Nafion® hybrid electrolyte for direct methanol fuel cells, J. Membr. Sci. 281 (2006) 619-625. https://doi.org/10.1016/j.memsci.2006.04.033
[45] C.Yang, S.Srinivasan, A.S.Arico, P.Creti, V.Baglio,V.Antonucci, composite nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochem. Solid State Lett. 4 (2001) 31-34. https://doi.org/10.1149/1.1353157
[46] M.Watanabe, H.Uchida, Y.Seki, M.E.Stonehart, Self-humidifying polymer electrolyte membranes for fuel cells, J. Electrochem. Soc. 143 (1996) 3847-3852. https://doi.org/10.1149/1.1837307
[47] L.Barbora, S.Acharya, R.Singh, K.Scott,A.Verma, A novel composite Nafion membrane for direct alcohol fuel cells, J. Membr. Sci. 326 (2009) 721-726. https://doi.org/10.1016/j.memsci.2008.11.009
[48] K. W.Bo¨ddeker, K.V.Peinemann, S. P. J. Nunes, Membr. Sci. 185 (2001) 1.
[49] M. K. Ravikumar, A. K. J. Shukla, Electrochem. Soc. 143(1996) 2601.
[50] A.Ku¨ ver, W. J. Vielstich, Power Sources.74(1998) 211.
[51] K. D. Kreuer, W. Weppner, A.Rabenau, Angew. Chem. Int. Ed. Engl. 21(1982) 208.
[52] C. Pu, W. Huang, K. L. Ley, E. S. J. Smotkin, Electrochem. Soc. 142(1995) 119.
[53] G. T. Burstein, C. J. Barnett, A. R. Kucernak, K. R. Williams, Catal. Today.38(1998), 425.
[54] V. Tricoli, N. Carretta, M. J. Bartolozzi, Electrochem. Soc. 147(2000) 1286.
[55] J. Kerres, W. Cui, R. Disson, W. J. Neubrand, Membr. Sci. 139(1998) 211.
[56] R. A. Weiss, A. Sen, L. A. Pottick, C. L. Willis, Polym. Commun. 31(1990) 220.
[57] R. A. Weiss, A. Sen, C. L. Willis, L. A. Pottick, Polymer. 32(1991) 1867.
[58] B. M. Sheikh-Ali, G. E. Wnek, U.S. Patent, 6,110,616, 2000.
[59] S. G. Ehrenberg, J. M. Serpico, G. E. Wnek, J. N. Rider, U.S. Patent, 5,679,482, 1997.
[60] S. G. Ehrenberg, , J. M. SerpociWnek, G. E. Rider, J. N. U.S. Patent, 5,468,574, 1995.
[61] Mokrini, J. L. Acosta, Polymer 42 (2001) 9.
[62] S. G. Ehrenberg, J. M. Serpico, B. M. Sheikh-Ali, T. N. Tangredi, E. Zador, G. E. Wnek, O. In Savadogo, P. R. Roberge, Eds.; Proceedings of the second international symposium on new materials for fuel cell and modern battery systems. Montreal Canada, 1997; p 828.
[63] G. E. Wnek, J. N. Rider, J. M. Serpico, A. G. Einset, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells. Electrochem. Soc. Proc. 1995, 247.
[64] W.Grot, Chem. Ing. Technol. 50(1978) 299.
[65] R. A. Weiss, A. Sen, , L. A. Pottick, C. L.Willis, Polymer.32(1991) 2785.
[66] M. Nishide, A.Eisenberg, Macromolecules 29(1996) 1507.
[67] G. E. Green, B. P. Stark, S. A. J. Zahir, Macromol. Sci., Rev. Macromol. Chem. 21(1982), , 187.
[68] J. E. Puskas, G. J. P. J. Kennedy, Macromol. Sci. Chem.1991, A28, 65. Crivello, J. V.; Yang, B. J. Macromol. Sci., Chem. 1994, A31, 517.
[69] H. Le Xuan, C. J. Decker, Polym. Sci. Polym. Chem. Ed. 31(1993) 769.
[70] S. M. Ellenstein, S. A. Lee, T. K. Palit, In radiation curing in polymer science and technology; Fouassier, J. P., Rabek, J. F., Eds.; Elsevier Applied Science: London, 1993; Vol. 4.
[71] C. Decker, T. N. T. Viet, Macromol. Chem. Phys. 1999, 200, 358.
[72] V. Dakin, Radiat. Phys. Chem. 45(1995) 715.
[73] Q. Zhang, O. K. C. Tsui, B. Du, F. Zhang, T. Tang, T.He, Macromolecules 33(2000) 9561.
[74] AarneHalme, JormaSelkainaho, TuulaNoponen, Axel Kohonen, An alternative concept for DMFC Combined electrolyzer and H2 PEMFC, International Journal of Hydrogen Energy 41 (2016) 2154-2164. https://doi.org/10.1016/j.ijhydene.2015.12.007
[75] A.Calabriso, D. Borello, L.Cedola, L. D.Zotto, S.G. Santori , Assessment of CO2 bubble generation influence on direct methanol fuel cell performance, Energy Procedia. 75 (2015) 1996 – 2002. https://doi.org/10.1016/j.egypro.2015.07.254
[76] B. Kuppan, P. Selvam, Platinum-supported mesoporous carbon (Pt/CMK-3) as anodic catalyst for direct methanol fuel cell applications: The effect of preparation and deposition methods, P. Nat.Science: Mater. I. 22(2012) 616–623. https://doi.org/10.1016/j.pnsc.2012.11.005
[77] C. Suo, X. Liua, J. Duana, G. Dinga,Y. Zhanga, Design of MEMS-based micro direct methanol fuel cell stack, Procedia Chemistry. 1 (2009) 1179–1182. https://doi.org/10.1016/j.proche.2009.07.294
[78] C.C.Yanga, Y.T.Lin, Preparation of a novel composite membrane and PtRu/Hollow carbon sphere (HCS) anode catalyst for alkaline direct methanol fuel cell (ADMFC), Energy Procedia. 61 (2014) 1410– 416. https://doi.org/10.1016/j.egypro.2014.12.137
[79] F.A.Halim, U.A.Hasran, M.S. Masdar, S.K.Kamarudin, W.R.W.Daud, Overview on Vapour Feed Direct Methanol Fuel Cell, APCBEE Procedia. 3(2012) 40 – 45. https://doi.org/10.1016/j.apcbee.2012.06.043
[80] J.Marcel, R. Galloa, G.Gattib, A.Graizzaroc, L.Marcheseb, H.O. Pastorea, Novel mesoporous carbon ceramics composites as electrodes for direct methanol fuel cell, J.Power Sources. 196 (2011) 8188– 8196. https://doi.org/10.1016/j.jpowsour.2011.05.008
[81] J.M. Ogden, M.M.Steinbugler, T.G. Kreutz, A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development, J.Power Sources. 79 (1999) 143-168. https://doi.org/10.1016/s0378-7753(99)00057-9
[82] M.Umeda, M.Ueda, S.Shironita, Novel O2-enhancing methanol oxidation at Pt-Ru-C sputtered electrode: Direct methanol fuel cell power generation performance, Energy Procedia. 28 (2012) 102 – 112. https://doi.org/10.1016/j.egypro.2012.08.044
[83] M. Sudarolia, A.K.Kolara, Heat and mass transfer characteristics of direct methanol fuel cell: experiments and model, Energy Procedia. 54 ( 2014 ) 359 – 366. https://doi.org/10.1016/j.egypro.2014.07.279
[84] T.Phuttacharta, N. Kreua-ongarjnukoola, R. Yeetsorna, M. Phongaksorna, PMMA/PU/CB composite bipolar plate for direct methanol fuel cell, Energy Procedia. 52 ( 2014 ) 516 – 524.
[85] V.S. Silva, A.M. Mendes, L.M. Madeira,S.P. Nunes, Membranes for direct methanol fuel cell applications: Analysis based on characterization, experimentation and modeling, Advances in Fuel Cells, 2005.
[86] A.S.Arico, P. Creti, E. Modica, G. Monforte, V. Baglio and V. Antonucci, Investigation of direct methanol fuel cells based on unsupported Pt–Ru anode catalysts with different chemical properties, ElectrochimicaActa. 45 (2000) 4319- 4328. https://doi.org/10.1016/s0013-4686(00)00531-4
[87] X.Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J.Power Sources. 86 (2000) 111-116. https://doi.org/10.1016/s0378-7753(99)00407-3
[88] P.Argyropoulos, K. Scott, W.M. Taama, Gas evolution and power performance in direct methanol fuel cells, J.Appl. Electrochem.29 (1999) 661-669.
[89] P. Argyropoulos, K. Scott, W.M. Taama, Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochim. Acta. 29 (1999) 661-669. https://doi.org/10.1016/s0013-4686(99)00102-4
[90] J. Nordlund, C. Picard, E. Birgersson, M. Vynnycky,G. Lindbergh, The design and usage of a visual direct methanol fuel cell, J. Appl. Electrochem.34 (2004) 763-770. https://doi.org/10.1023/b:jach.0000035602.70278.0e
[91] T.Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution, J. Power Sources. 125 (2004) 1-9. https://doi.org/10.1016/s0378-7753(03)00824-3
[92] J.P.Meyers, J. Newman, Simulation of the direct methanol fuel cell-ii. modeling and data analysis of transport and kinetic phenomena, J. Electrochem. Soc.149 (2002) A718-A728. https://doi.org/10.1149/1.1473189
[93] G.Q.Lu, C.Y. Wang, Electrochemical and flow characterization of a direct methanol fuel cell, J Power Sources. 134 (2004) 33-40. https://doi.org/10.1016/j.jpowsour.2004.01.055
[94] H. Yang, T.S. Q.Zhao, Ye, In situ visualization study of CO2 gas bubble behaviour in DMFC anode flow fields, J.Power Sources. 139 (2005) 79- 90. https://doi.org/10.1016/j.jpowsour.2004.05.033
[95] H. Yang, T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells, Electrochim. Acta. 50 (2005) 3243-3252. https://doi.org/10.1016/j.electacta.2004.11.060
[96] Q. Liao, X. Zhu, X. Zheng, Y. Ding, Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC, J.Power Sources. 171 (2007) 644-651. https://doi.org/10.1016/j.jpowsour.2007.06.257
[97] M.D.Lundin, M.J. McCready, Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility, J Power Sources. 172 (2007) 553-559. https://doi.org/10.1016/j.jpowsour.2007.05.074
[98] M.M.Mench, C.Y. Wang, An in situ method for determination of current distribution in PEM fuel cells applied to a direct methanol fuel cell, J.Electrochem. Soc.150 (2003) 79-85. https://doi.org/10.1149/1.1526108
[99] G.Q.Lu, C.Y. Wang, Electrochemical and flow characterization of a direct methanol fuel cell, J.Power Sources. 134 (2004) 33-40. https://doi.org/10.1016/j.jpowsour.2004.01.055
[100] K.S.Chen, M.A. Hickner, D.R. Noble, Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface, Int. J. Energ. Res.29 (2005) 1113-1132. https://doi.org/10.1002/er.1143
[101] V. Tricoli, N. Carretta, M. Bartolozzi, A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes, J. Electrochem. Soc.147 (2000) 1286-1290. https://doi.org/10.1149/1.1393351
[102] S. Hikita, K. Yamane, Y. Nakajima, Measurement of methanol crossover in direct methanol fuel cell, JSAE Rev.22 (2001) 151-156. https://doi.org/10.1016/s0389-4304(01)00086-8
[103] J.DohleH, J.Divisek, H.F. Mergel, C.Oetjen, Zingler, D. Stolten, Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell, J. Power Sources. 105 (2002) 274-282. https://doi.org/10.1016/s0378-7753(01)00953-3
[104] K. Ramya, K.S. Dhathathreyan, Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane, J Electroanalyt. Chem.542 (2003) 109-115. https://doi.org/10.1016/s0022-0728(02)01476-6
[105] R. Jiang D. Chu, Comparative studies of methanol crossover and cell performance for a DMFC, J. Am. Chem. Soc. 151 (2004) 69- 76.
[106] T.H.Kin, W.Y. Shieh, C.C. Yang, G. Yu, Estimating the methanol crossover rate of PEM and the efficiency of DMFC via a current transient analysis, J. Power Sources. 161 (2006) 1183-1186. https://doi.org/10.1016/j.jpowsour.2006.06.009
[107] J. Han, H. Liu, Real time measurements of methanol crossover in a DMFC, J. Power Sources. 164 (2007) 166–173. https://doi.org/10.1016/j.jpowsour.2006.09.105
[108] J.Y.Park, J.H. Lee, S. Kang, J. Sauk, I. Song, Mass balance research for high electrochemical performance direct methanol fuel cells with reduced methanol crossover at various operating conditions, J. Power Sources. 178 (2008) 181-187. https://doi.org/10.1016/j.jpowsour.2007.12.021
[109] P.S.Kauranen, E. Skou, Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures, J. Appl. Electrochem.26 (1996) 909-917. https://doi.org/10.1007/bf00242042
[110] M.K.Ravikumar, A.K. Shukla, Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell, J. Electrochem. Soc.143 (1996) 2601-2606. https://doi.org/10.1149/1.1837054
[111] K.J.Cruickshan, K. Scott, The degree and effect of methanol crossover in the direct methanol fuel cell, J. Power Sources. 70 (1998) 40-47. https://doi.org/10.1016/s0378-7753(97)02626-8
[112] Kuver, W. Vielstich, Investigation of methanol crossover and single electrode performance during PEMDMFC operation: A study using a solid polymer electrolyte membrane fuel cell system, J Power Sources. 74 (1998) 211- 218. https://doi.org/10.1016/s0378-7753(98)00065-2
[113] K. Scott, W.M. Taama, P. Argyropoulos, K. Sundmacher, The impact of mass transport and methanol crossover on the direct methanol fuel cell, J. Power Sources. 83 (1999) 204-216. https://doi.org/10.1016/s0378-7753(99)00303-1
[114] B. Gurau, E.S. Smotkin, Methanol crossover in direct methanol fuel cells: a link between power and energy density, J. Power Sources. 112 (2002) 339-352. https://doi.org/10.1016/s0378-7753(02)00445-7
[115] V. Gogel, T. Frey, Z. Yongsheng, K.A. Friedrich, L. Jörissen, J. Garche, Performance and methanol permeation of direct methanol fuel cells: dependence on operating conditions and on electrode structure, J.Power Sources. 127(2004) 172-180. https://doi.org/10.1016/j.jpowsour.2003.09.035
[116] C.Y.Du, T.S. Zhao, W.W. Yang, Effect of methanol crossover on the cathode behaviour of a DMFC: A half-cell investigation, Electrochim. Acta. 52 (2007) 5266–5271. https://doi.org/10.1016/j.electacta.2007.01.089
[117] C. Pu, W. Huang, K.L. Ley, E.S. Smotkin, A methanol impermeable proton conducting composite electrolyte system, J. Electrochem. Soc.142 (1995) L119-L120. https://doi.org/10.1149/1.2044333
[118] J.S.Wainright, J.T. Wang, D. Weng, R.F. Savinell, M. Litt, Acid-Doped Polybenzimidazoles: A new polymer electrolyte, J. Electrochem. Soc.142 (1995) L121-L123. https://doi.org/10.1149/1.2044337
[119] J.T.Wang, J.S. Wainright, R.F. Savinell, M. Litt, A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte, J.Appl. Electrochem.26 (1996) 751-756. https://doi.org/10.1007/bf00241516
[120] Kuver, K. Potje-Kamloth, Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell, Electrochim. Acta. 43 (1998) 2527-2535. https://doi.org/10.1016/s0013-4686(97)10114-1
[121] G.Q.Lu, F.Q. Liu, C.Y. Wang, Water transport through Nafion 112 membrane in DMFCs, Electrochem. Solid State. Lett. 8 (2005) Al-A4. https://doi.org/10.1149/1.1825312
[122] S.S.Sandhu, R.O. Crowther, J.P. Fellner, Prediction of methanol and water fluxes through a direct methanol fuel cell polymer electrolyte membrane, Electrochim. Acta. 50 (2005) 3985-3991. https://doi.org/10.1016/j.electacta.2005.02.048
[123] F.Liu, G. Lu, C.Y. Wang, Low crossover of methanol and water through thin membranes in direct methanol fuel cells, J. Electrochem. Soc.153 (2006) A543-A553. https://doi.org/10.1149/1.2161636
[124] W. Liu, C.Y. Wang, Modelling water transport in liquid feed direct methanol fuel cells, J. Power Sources. 164 (2007) 189-195. https://doi.org/10.1016/j.jpowsour.2006.10.047
[125] M.H.Shi, J. Wang, Y.P. Chen, Study on water transport in PEM of a direct methanol fuel cell, J. Power Sources. 166 (2007) 303-309. https://doi.org/10.1016/j.jpowsour.2006.12.036
[126] C.Xu, T.S. Zhao, In situ measurements of water crossover through the membrane for direct methanol fuel cells, J. Power Sources. 168 (2007) 143-153. https://doi.org/10.1016/j.jpowsour.2007.03.023
[127] F. Liu, C.Y. Wang, Water and methanol crossover in direct methanol fuel cells – Effect of anode diffusion media, Electrochim. Acta. 53 (2008) 5517-5522. https://doi.org/10.1016/j.electacta.2008.05.015
[128] A.S.Arico, P. Creti, V. Baglio, E. Modica, V. Antonucci, Influence of flow field design on the performance of a direct methanol fuel cell, J. Power Sources. 91 (2000) 202-209. https://doi.org/10.1016/s0378-7753(00)00471-7
[129] H.Yang, T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells, Electrochim. Acta. 50 (2005) 3243-3252. https://doi.org/10.1016/j.electacta.2004.11.060
[130] S. Aricò, S. Srinivasan, V. Antonucci, Fuel Cell.1 (2001) 133.
[131] T. Schultz, S. Zhou and K. Sundmacher, Chem. Eng. Technol. 24 (2001) 12.
[132] R. Dillon, S. Srinivasan, A.S. Aricò and V. Antonucci, J. Power Sources 127 (2004) 112.
[133] P. Piela and P. Zelenay, The Fuel Cells Review 1(2) (2004) 17.
[134] K. A. Kreuer, J. Membr. Sci. 185 (2001) 3.
[135] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40.
[136] F. R. Kalhammer, P. R. Prokopius, V. P. Voecks, Status and prospects of fuel cells as automobile engines, State of California Air Resources Board, California, 1998.
[137] D. Chu, S. Gilman, J. Electrochem. Soc. 141 (1994) 1770.
[138] A.S. Aricò, P. Creti, P.L. Antonucci, V. Antonucci, Electrochem. Solid-State Lett. 1 (1998) 66.
[139] T. Schultz, S. Zhou, K. Sundmacher, Chem. Eng. Technol. 24 (2001) 12.
[140] R. Dillon, S. Srinivasan, A.S. Aricò, V. Antonucci, J. Power Sources 127 (2004) 112.
[141] P. Piela, P. Zelenay, Fuel Cells Rev.1(2) (2004) 17.
[142] K. A. Kreuer, J. Membr. Sci. 185 (2001) 3.
[143] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40.
[144] F. R. Kalhammer, P. R. Prokopius, V. P. Voecks, Status and prospects of fuel cells as automobile engines, State of California Air Resources Board, California, 1998.
[145] D. Chu, S. Gilman, J. Electrochem. Soc. 141 (1994) 1770.
[146] A.S. Aricò, P. Creti, P.L. Antonucci and V. Antonucci, Electrochem. SolidState Lett. 1 (1998) 66.
[147] C. Yang, S. Srinivasan, A.S. Aricò, P. Cretì, V. Baglio, V. Antonucci, Electrochem. Solid-State Lett. 4 (2001) 31.
[148] V.S. Silva, B. Ruffmann, S. Vetter, M. Boaventura, A. Mendes, M. Madeira, S. Nunes, Chem. Eng. Sci. (submitted, 2005).
[149] X. Jin, M. T. Bishop, T. S. Ellis, F. Karasz, Br. Polym. J. 17 (1985) 4.
[150] T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Solid State Ionic.106 (1998) 219.
[151] S. M. J. Zaidi, S. D. Mikailenko, G. P. Robertson, M. D. Guiver, S. Kaliaguine, J. Membr. Sci. 173 (2000) 17.
[152] S. D. Mikhailenko, S. M. J. Zaidi, S. Kaliaguine, Catal. Today. 67 (2001) 225.
[153] B. Bauer, D. J. Jones, J. Roziere, L. Tchicaya, G. Alberti, M. Casciola, I.Massinelli, A. Peraio, S. Besse, E. Ramunni, J. New Mater. Electrochem. Systems. 3 (2000) 93.
[154] E. Peled, T. Duvdevani, A. Aharon, A. Melman, Electrochem. Solid-State Lett. 3 (2000) 525.
[155] S. Hietala, K. Koel, E. Skou, M. Elomaa, F. Sundholm, J. Mater. Chem. 8 (1998) 1127.
[156] A.S. Aricò, P.L. Antonucci, N. Giordano, V. Antonucci, Mater. Letters 24 (1995) 399.
[157] L. Li, J. Zhang, Y. Wang, J. Membr. Sci. 226 (2003) 159.
[158] B. Kumar, J. P. Fellner, J. Power Sources 123 (2003) 132.
[159] S. P. Nunes, B. Ruffmann, E. Rikowsky, S. Vetter, K. Richau, J. Membr. Sci. 203 (2002) 215.
[160] B. Ruffmann, H. Silva, B. Schulte, S. Nunes, Solid State Ionic. 162-163 (2003) 269.
[161] V. S. Silva, B. Ruffmann, S. Vetter, A. Mendes, L. M. Madeira, S. P. Nunes, Catalysis Today.(accepted, 2005).
[162] V.S. Silva, S. Weisshaar, R. Reissner, B. Ruffman, S. Vetter, A. Mendes, L.M. Madeira, S.P. Nunes, J. Power Sources (accepted, 2005).
[163] V. Silva, B. Ruffmann, H. Silva, A. Mendes, M. Madeira, S. Nunes, Mater. Sci. Forum. 455-456 (2004) 587. https://doi.org/10.4028/www.scientific.net/msf.455-456.587
[164] V.S. Silva, B. Ruffmann, H. Silva, Y. A. Gallego, A. Mendes, L. M. Madeira, S. P. Nunes, J. Power Sources. 140 (2005) 34. https://doi.org/10.1016/j.jpowsour.2004.08.004
[165] V.S. Silva, J. Schirmer, R. Reissner, B. Ruffman, H. Silva, A. Mendes, L.M. Madeira, S.P. Nunes, J. Power Sources 140 (2005) 41.
[166] M. L. Ponce, L.A.S.de A. Prado, B. Ruffmann, K. Richau, R. Mohr, S. P. Nunes, J. Membr. Sci. 217 (2003) 5.
[167] M.L Ponce, L.A.S.de A. Prado, V. Silva, S. P. Nunes, Desalination. 162 (2004) 383.
[168] G. Alberti, M. Casciola, L. Massinelli, B. Bauer, J. Membr. Sci. 185 (2001) 73
[169] P. Saiti, A.S. Aricò, S. Hocevar, V. Antonucci, J. New Mater. Electrochem. Syst. 1 (1998) 1.
[170] O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, Chem. Lett. 1 (1979) 17.
[171] D.E. Katsoulis, Chem. Rev. 98 (1998) 359.
[172] P. Saiti, S. Hocevar, N. Giordano, Int. Hydrogen Energy. 22 (1997) 809.
[173] N. Giordano, P. Saiti, S. Hocevar, A.S. Aricò, Electrochim. Acta 41 (1996) 397.
[174] C.Hartnig, E. Spohr, The role of water in the initial steps of methanol oxidation on Pt(111), Chem. Phys. 319 (2005) 185–191. https://doi.org/10.1016/j.chemphys.2005.05.037
[175] C. Hartnig, J. Grimminger, E. Spohr, The role of water in the initial steps of methanol oxidation on Pt(211), Electrochim. Acta. 52 (2007) 2236–2243. https://doi.org/10.1016/j.electacta.2006.04.065
[176] Y.X.Chen, M. Heinen,Z. Jusys, R.J. Behm, Kinetics andmechanism of the electrooxidation of formic acid—spectroelectrochemical studies in a flow cell, Angew. Chem. Int. Ed. 45 (2006) 981–985. https://doi.org/10.1002/anie.200502172
[177] C. Hartnig, J. Grimminger, E. Spohr, Adsorption of formic acid on Pt(111) in the presence of water, J. Electroanal. Chem. 607 (2007) 133–139. https://doi.org/10.1016/j.jelechem.2007.02.018
[178] P. Commer, C. Hartnig, D. Seeliger, E. Spohr, Modeling of proton transfer in polymer electrolyte membranes on different time and length scales, Mol. Simul. 30 (2004) 775–763. https://doi.org/10.1080/0892702042000270179
[179] E. Spohr, P. Commer, A.A. Kornyshev, Enhancing proton mobility in polymer electrolyte membranes: lessons from molecular dynamics simulations, J. Phys. Chem. B. 106 (2002) 10560–10569. https://doi.org/10.1021/jp020209u
[180] P. Commer, A.G. Cherstvy, E. Spohr, A.A. Kornyshev, The effect of water content on proton transport in polymer electrolyte membranes, Fuel Cells. 2 (2002) 127–136. https://doi.org/10.1002/fuce.200290011
[181] S. Walbran, A.A. Kornyshev, Proton transport in polarizable water, J. Chem. Phys. 114 (2001) 10039–10048. https://doi.org/10.1063/1.1370393
[182] S.J. Jang, V. Molinero, T.Cagin, W.A. Goddard, III Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: effect of monomeric sequence, J. Phys. Chem. B. 108 (2004) 3149–3157. https://doi.org/10.1021/jp036842c
[183] D.Seeliger, C. Hartnig, E. Spohr, Aqueous pore struture and proton dynamics in solvated Nafion membranes, Electrochim. Acta. 50 (2005) 4234–4240. https://doi.org/10.1016/j.electacta.2005.03.071
[184] N.P. Blake, M.K. Petersen, G.A. Voth, H. Metiu, Structure of hydrated Na-Nafion polymer membranes, J. Phys. Chem. B 109 (2005) 24244–24253. https://doi.org/10.1021/jp054687r
[185] E. Spohr, Monte Carlo simulations of a simple lattice model of polymer electrolyte membranes, J. Mol. Liquids. 136 (2007) 288–293. https://doi.org/10.1016/j.molliq.2007.08.012