Application of Functional Metal Nanoparticles for Biomarker Detection


Application of Functional Metal Nanoparticles for Biomarker Detection

Goutam Ghosh

Recent advances in metal nanoparticles (mNPs), such as gold and silver nanoparticles, based biosensor technology for biomarkers detection have been reviewed. The localized surface plasmon resonance signal appearing from the surface of mNPs upon irradiation of light provides the immense scope of improving the sensitivity and lowering of the detection limit of biosensors. Moreover, mNPs have advantages such as biocompatibility, functional flexibility and large surface-to-volume ratio. The interaction of functional nanoparticles with the cell membrane and their subsequent internalization into the cell play an important role in the imaging of diseased cells/tissues. Several factors such as surface functionalization, size and shape of nanoparticles influence these processes. Recent reports indicate that non-spherical nanoparticles such as nanorods have a better yield than spherical ones for cellular uptake, longer blood circulation time, and higher catalytic activity. Potential toxicity of mNPs in an in vivo application has also been reviewed.

Metal Nanoparticles, Biosensors, Biomarkers, Cancer Detection, Toxicity

Published online 3/25/2019, 30 pages

Citation: Goutam Ghosh, Application of Functional Metal Nanoparticles for Biomarker Detection, Materials Research Foundations, Vol. 47, pp 77-130, 2019


Part of the book on Biosensors

[1] R. Mayeux, Biomarkers: Potential uses and limitations, NeuroRx 1 (2004) 182-188.
[2] R. Frank, R. Hargreaves, Clinical biomarkers in drug discovery and development, Nat. Rev. Drug Discov. 2 (2003) 566-580.
[3] N.L. Henry, D.F. Hayes, Cancer biomarkers, Molecular Oncology 6 (2012) 140-146.
[4] J. Rhea, R.J.Molinaro, Cancer biomarkers: surviving the journey from bench to bedside, Med. Lab. Obs. 43 (2011)10-2, 16, 18; quiz 20, 22; PMID:21446576.
[5] T. Behne, M.S. Copur, Biomarkers for hepatocellular carcinoma, Int. J. Hepatol. 2012 (2012) 1-7;doi:10.1155/2012/859076.
[6] A. Musolino, M.A. Bella, B. Bortesi, M. Michiara, N. Naldi, P. Zanelli, M. Capelletti, D. Pezzuolo, R. Camisa, M. Savi, T.M. Neri, A. Ardizzoni, BRCA mutations, molecular markers and clinical variables in early-onset breast cancer: a population-based study, Breast16(2007) 280-292; doi:10.1016/j.breast.2006.12.003. PMID 17257844.
[7] R. Dienstmann, J. Tabernero, BRAF as a target for cancer therapy, Anti. Canc. Agents Med. Chem. 11(2011) 285-295;doi:10.2174/187152011795347469. PMID 21426297.
[8] N. Lamparella, A. Barochia, S. Almokadem, Impact of genetic markers on treatment of non-small cell lung cancer, Adv. Exp. Med. Biol. 779(2013)145-164;doi:10.1007/978-1-4614-6176-0_6. PMID 23288638.
[9] G. Orphanos, P. Kountourakis, Targeting the HER2 receptor in metastatic breast cancer, Hematol. Oncol. Stem Cell Ther. 5(2012) 127-137.
[10] S.E. DePrimo, X. Huang, M.E. Blackstein, C.R. Garrett, C.S. Harmon, P. Schoffski, M.H. Shah, J. Verweij, C.M. Baum, G.D. Demetri, Circulating levels of soluble KIT serve as a biomarker for clinical outcome in gastrointestinal stromal tumorpatients receiving sunitinib following imatinib failure, Clinic. Can. Res.15 (2009) 5869-5877;doi:10.1158/1078-0432.CCR-08-2480.
[11] A. Bantis, P. Grammaticos, Prostatic specific antigen and bone scan in the diagnosis and follow-up of prostate cancer. Can diagnostic significance of PSA be increased?. Hell. J. Nucl. Med.15 (2012) 241-246; PMID 23227460.
[12] S. Kruijff, H.J. Hoekstra, The current status of S-100B as a biomarker in melanoma, Eur. J. Surg. Oncol. 38(2012) 281-285; doi:10.1016/j.ejso.2011.12.005. PMID 22240030.
[13] J.A. Ludwig, J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection,Nat. Rev. Can. 5 (2005) 845-856;doi:10.1038/nrc1739. PMID 16239904.
[14] A. Turner, G. Wilson, I. Kaube, Biosensors: fundamentals and applications, Oxford University Press, Oxford, UK, 1987; ISBN 0198547242.
[15] F.G. Banica, Chemical sensors and biosensors: fundamentals and applications, John Wiley & Sons, Chichester, UK, 2012; ISBN 9781118354230.
[16] B. Leca-Bouvier, L.J. Blum, Biosensors for protein detection: a review, Anal. Lett. 38 (2005) 1491-1517.
[17] Y. Xiao, F. Patolsky, E. Katz, J.F. Hainfeld, I. Willner, Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle, Science 299 (2003) 1877-1881.
[18] M. Schierhorn, S.J. Lee, S.W. Boettcher, G.D. Stucky, M. Moskovits, Metal-silica hybrid nanostructures for surface‐enhanced Raman spectroscopy, Adv. Mater., 18 (2006) 2829-2832.
[19] H. Cai, Y. Xu, N. Zhu, P. He, Y. Fang, An electrochemical DNA hybridization detection assay based on a silver nanoparticle label, Analyst 127 (2002) 803-808.
[20] J. Wang, G. Liu, R. Polsky, A. Merkoçi, Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags, Electrochem. Comm.4 (2002) 722-726.
[21] J. Ling, C.Z.Huang, Y.F.Li, L. Zhang, L.Q. Chen, S.J. Zhen, Light scattering signals from nanoparticles in biochemical assay, pharmaceutical analysis and biological imaging, Trends Anal. Chem. 28 (2009) 447-453.
[22] X. Huang, R.O. Connor, E.A. Kwizera, Gold nanoparticle based platforms for circulating cancer marker detection, Nanotheranotics 1 (2017) 80-102.
[23] D.L. Nida, M.S. Rahman, K.D. Carlson, R.R. Kortum, M. Follen, Fluorescent nanocrystals for use in early cervical cancer detection,Gynecol. Oncol. 99 (2005) S89-S94.
[24] D. Karleya, D. Gupta, A. Tewari, Biomarker for cancer: a great promise for future. World J. Oncol. 2 (2011) 151-157.
[25] A. Agah, A. Hassibi, J.D. Plummer, P.B. Griffin, Design requirements for integrated biosensor arrays, European conference on biomedical optics, Proceedings of the SPIE, 5699 (2005) 403-413.
[26] F. Patolsky, G. Zheng, C.M. Lieber, Nanowire sensors for medicine and the life sciences, Nanomedicine 1(2006) 51-65.
[27] S. Carrara, S. Ghoreishizadeh, J. Olivo, I. Taurino, C. Baj-Rossi, A. Cavallini, M.O. de Beeck, C. Dehollain, W. Burleson, F.G. Moussy, A. Guiseppi-Elie, G. De Micheli, Fully integrated biochip platforms for advanced healthcare, Sensors 12(2012) 11013-11060.
[28] S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications, Nanomaterials (Basel) 6 (2016) 58-62.
[29] R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,Science277 (1997) 1078-1081.
[30] W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol.13 (2002) 40-46.
[31] S.J. Park, T.A. Taton, C.A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes,Science295 (2002) 1503-1506.
[32] L. Josephson, J.M. Perez, R. Weissleder, Magnetic nanosensors for the detection of oligonucleotide sequences,Angew. Chem.113 (2001) 3304-3306.<3304::AID-ANGE3304>3.0.CO;2-D
[33] J.A. Hansen, R. Mukhopadhyay, J.Ø.Hansen, K.V. Gothelf, Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles, J. Am. Chem. Soc.128 (2006) 3860-3861.
[34] C. Wang, Z. Sun, L. Ma, M. Su, Simultaneous detection of multiple biomarkers with over three orders of concentration difference using phase change nanoparticles, Anal. Chem.83 (2011) 2215-2219.
[35] V.M. Shalaev, Transforming light, Science 322 (2008) 384-386.
[36] M.L. Brongersma, V.M. Shalaev, The case for plasmonics, Science 328 (2010) 440-441.
[37] D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photon. 4 (2010) 83-91.
[38] S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding, Nat. Photon.1 (2007) 641-648.
[39] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater.9(2010) 193-204.
[40] S. Zeng, B. Dominique, H. Ho-Pui, Y. Ken-Tye, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev. 43 (2014) 3426-3452.
[41] D. Xu, J. Mao, Y. He, E. Yeung, Size-tunable synthesis of high-quality gold nanorods under basic conditions by using H2O2 as the reducing agent, J. Mater. Chem. C 2 (2014) 4989-4996.
[42] C. Sonnichsen, A.P. Alivisatos, Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy, Nano Lett. 5 (2005) 301-304.
[43] X. Wen, H. Shuai, L. Min, Precise modulation of gold nanorods aspect ratio based on localized surface plasmon resonance, Opt. Mater. 60 (2016) 324-330.
[44] S. Link, M.A. El-Sayed,Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B 103 (1999) 4212-4217.
[45] S. Link, M.B. Mohamed, M.A. El-Sayed,Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,J. Phys. Chem. B 103 (1999) 3073-3077.
[46] Y. Zhao, Y. Wang, F. Ran, Y. Cui, C. Liu, Q. Zhao, Y. Gao, D. Wang, S. Wang, A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics,Sci. Rep. 7 (2017) 4131(1-11).
[47] R. Richards, H. Bonnemann, Synthetic approaches to metallic nanomaterials,in: C.S.S.R. Kumar, J. Hormes, C. Leuschner (Eds.), Nanofabrication towards biomedical applications: techniques, tools, applications, and impact, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005, pp. 1-32.
[48] H.R. Ghorbani, A review of methods for synthesis of Al nanoparticles, Oriental J. Chem. 30 (2014) 1941-1949.
[49] C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly and optical applications, J. Phys. Chem. B 109 (2005) 13857-13870.
[50] U.Y. Qazi, R. Javaid, A review on metal nanostructures: preparation methods and their potential applications, Advances in Nanoparticles 5 (2016) 27-43.
[51] M.T. Swihart, Vapor-phase synthesis of nanoparticles, Curr. Opin. Colloid Interface Sci. 8 (2003) 127-133.
[52] H. Bonnemann, R.M. Richards, Nanoscopic metal particles -synthetic methods and potential applications, Eur. J. Inorg. Chem. 2001 (2001) 2455-2480.<2455::AID-EJIC2455>3.0.CO;2-Z
[53] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited, J. Phys. Chem. B 110 (2006) 15700-15707.
[54] P.C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(1982) 3391-3395.
[55] J.A. Creighton, C.G. Blatchford, M.G. Albrecht, Plasma resonance enhancement of Raman scattering bypyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc.,Faraday Trans. 2: Mol. Chem. Phys. 75(1979) 790-798.
[56] S. Ayyappan, G.R. Srinivasa, G.N. Subbanna, C.N.R. Rao, Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts, J. Mater. Res. 12(1997) 398-401.
[57] S.D. Bunge, T.J. Boyle, T.J. Headley, Synthesis of coinage-metal nanoparticles from mesityl precursors, Nanoletters 3(2003) 901-905.
[58] S. Panigrahi, S. Kundu, S.K. Ghosh, S. Nath, T. Pal, General method of synthesis of metal nanoparticles, J. Nanopart. Res. 6 (2004) 411-414.
[59] S.M. Landage, A.I. Wasif, P. Dhuppe, Synthesis of nanosilver using chemical reduction method, Int. J. Adv. Res. Engg. Appl. Sci. 3 (2014) 14-22.
[60] Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108 (2004) 945-951.
[61] R.P. Andres, J.D. Bielefeld, J.I. Henderson, D.B. Janes, V.R. Kolagunta, C.P. Kubiak, W.J. Mahoney, R.G. Osifchin, Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters, Science 273 (1996) 1690-1693.
[62] K.S. Suslick, M. Fang, T. Hyeon, Sonochemical synthesis of iron colloids, J. Am. Chem. Soc. 118 (1996) 11960-11961.
[63] R.A. Hobson, P. Mulvaney, F. Grieser, Formation of Q-state CdS colloids using ultrasound, J. Chem. Soc., Chem. Commun.7 (1994) 823-824.
[64] W. Huang, X. Tang, Y. Wang, Y. Koltypin, A. Gedanken, Selective synthesis of anatase and rutile via ultra-sound irradiation, Chem. Commun.15 (2000) 1415-1416.
[65] M.A. Lopez-Quintela, Synthesis of nanomaterials in microemulsions: formation mechanism and growth control, Curr. Opin. Coll. Int. Sci. 8 (2003) 137-144.
[66] M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials, Arb. J. Chem. 5 (2012) 397-417.
[67] I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions, Adv. Colloid Interface Sci. 110 (2004) 49-74.
[68] M. Husein, E. Rodil, J. Vera, Formation of silver chloride nanoparticles in microemulsions by direct precipitation with the surfactant counterions, Langmuir 9 (2003) 846-8474.
[69] P. He, X. Shen, H. Gao, Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption, J. Colloid Interface Sci. 284 (2005) 510-515.
[70] M. Salavati-Niasari, F. Davar, N. Mir, Synthesis and characterization of metallic copper nanoparticles via thermal decomposition, Polyhedron 27 (2008) 3514-3518.
[71] J.L. Gardea-Torresdy, J.G. Parsons, E. Gomez, P. Videa, H.E. Troiani, P. Santiago, M.J. Yacaman,Formation and growth of Au nanoparticles inside live alfalfa plants, Nano Lett. 2 (2002) 397-401.
[72] J.L. Gardea-Torresdy, E. Gomez, J.R.P. Videa, J.G. Parsons, H. Troiani, M.J. Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles, Langmuir 19 (2003) 1357-1361.
[73] A. Sikora, A.G. Shard, C. Minelli, Size and ζ-potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing, Langmuir 32 (2016) 2216-2224.
[74] V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates, Pharm. Res. 27 (2010) 796−810.
[75] J. Gross, S. Sayle, A.R. Karow, U. Bakowsky, P. Garidel, Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters, Eur. J. Pharm. Biopharm, 104 (2016) 30−41.
[76] S.K. Srivastava, Y. Yamada, C. Ogino, A. Kondo, Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol, Nanoscale res. lett. 8(2013) 1-9.
[77] U.K. Parida, B.K. Bindhani, P. Nayak, Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract, World J. Nano Sci. Engg. 1 (2011) 93-98.
[78] R.K. Petla, S. Vivekanandhan, M. Misra, A.K. Mohanty, N. Satyanarayana, Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles, J. Biomater. Nanobiotechnol. 3 (2012) 14-19.
[79] J.H. Lee, K. Ahn, S.M. Kim, K.S. Jeon, J.S. Lee, I.J. Yu, Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles, J. Nanopart. Res. 14 (2012) 1-10.
[80] H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Hakkinen, N. Zheng, All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures, Nat. commun.4 (2013) 1-8.
[81] A.M. Awwad, N.M. Salem, A green and facile approach for synthesis of magnetite nanoparticles, Nanosci. Nanotechnol. 2 (2012) 208−213.
[82] V.P. Zharov, K.E. Mercer, E.N. Galitovskaya, M.S. Smeltzer, Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles, Biophys. J. 15 (2006)619-627.
[83] L.E. van Vlerken, T.K. Vyas, M.M. Amiji,Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery, Pharm. Res. 24 (2007) 1405-1414.
[84] J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticles PEGylation for imaging and therapy, Nanomedicine 6 (2011) 715-728.
[85] G. Prencipe, S.M. Tabakman, K. Welsher, Z. Liu, A.P. Goodwin, L. Zhang, J. Henry, H. Dai, PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation, J. Am. Chem. Soc. 131 (2009) 4783-4787.
[86] V. Wycisk, K. Achazi, O. Hirsch, C. Kuehne, J. Dernedde, R. Haag, K. Licha, Heterobifunctional dye: Highly fluorescent linkers based on cyanine, Chem. Open 6 (2017) 437-446.
[87] D.M. Collard, M.A. Fox, Use of electroactive thiols to study the formation and exchange of alkanethiol monolayers on gold, Langmuir7(1991) 1192-1197.
[88] Z. Liu, C. Davis, W. Cai, L. He, X. Chen, H. Dai, Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy, Proc. Natl. Acad. Sci., USA105(2008) 1410-1415.
[89] Y. Hong, D. Shin, S. Cho, H. Uhm, Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability, Chem. Phys. Lett. 427 (2006) 390-393.
[90] G.H. Hermanson, Bioconjugate techniques, second edition, Academic Press, San Diego, Calif, USA, 2008.
[91] O.M. Koo, I. Rubinstein, H. Onyuksel, Role of nanotechnology in targeted drug delivery and imaging: a concise review, Nanomedicine 1(2005) 193-212.
[92] V.P.R. Chichili, V. Kumar, J. Sivaraman, Linkers in the structural biology of protein-protein interaction, Protein Sci. 22 (2013) 153-167.
[93] M. Nickels, J. Xie, J. Cobb, J.C. Gore, W. Pham, Functionalization of iron oxide nanoparticles with a versatile epoxy amine linker, J. Mater. Chem. 20 (2010) 4776-4780.
[94] J. Lu, F. Jiang, A. Lu, G. Zhang, Linkers having a crucial role in antibody-drug conjugates, Int. J. Mol. Sci. 17 (2016) 561-582.
[95] R. Popovtzer, A. Agrawal, N.A. Kotov, A. Popovtzer, J. Balter, T.E. Carey, R. Kopelman, Targeted gold nanoparticles enable molecular CT imaging of cancer,Nano Lett. 8 (2008) 4593-4596.
[96] J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy, Adv. Drug Deliv. Rev. 60 (2008) 1241-1251.
[97] S. Wang, E.E. Dormidontova, Selectivity of ligand-receptor interactions between nanoparticle and cell surfaces, Phys. Rev. Lett. 109 (2012) 238102 (1-5).
[98] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancertherapy, Nat. Nanotechnol. 2 (2007) 751-760.
[99] K. Loomis, K. McNeeley, R.V. Bellamkonda, Nanoparticles with targeting, triggered release and imaging functionality for cancer applications, Soft Matter 7 (2011) 839-856.
[100] J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Delivery Rev.60 (2008) 1615-1626.
[101] A.C. Prost, F. Menegaux, P. Langlois, J.M. Vidal, M. Koulibaly, J.L. Jost, J.J. Duron, J.P. Chigot, P. Vayre, A. Aurengo, J.C. Legrand, G. Rosselin, C. Gespach, Differential transferrin receptor density in human colorectal cancer: a potential probe for diagnosis and therapy, Int. J. Oncol. 13 (1998) 871-876.
[102] W. Cai, S.S. Gambhir, X. Chen, Multimodality tumor imaging targeting integrin αvβ3, Bio.Techniques 39 (2005) S14-S25.
[103] C.B. Carlson, P. Mowery, R.M. Owen, E.C. Dykhuizen, L.L. Kiessling, Selective tumor cell targeting using low-affinity, multivalent interactions, ACS Chem. Biol. 2 (2007) 119-127.
[104] F.J. Martinez-Veracoechea, D. Frenkel, Designing super selectivity in multivalent nano-particle binding, Proc. Natl. Acad. Sci., U.S.A 108 (2011) 10963-10968.
[105] X. He, K. Wang, Z. Cheng, In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2 (2010) 349-366.
[106] T.F. Massoud, S.S. Gambhir, Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm, Trends Mol. Med. 13 (2007) 183-191.
[107] J.V. Frangioni, New technologies for human cancer imaging, J. Clin. Oncol. 26(2008) 4012-4021.
[108] J. Merian, J. Gravier, F. Navarro, I. Texier, Fluorescent nanoprobe dedicated to in vivo imaging: from preclinical validations to clinical translation, Molecules 17 (2012) 5564-5591.
[109] F. Leblond, S.C. Davis, P.A. Valde, B.W. Pogue, Pre-clinical whole-body fluorescences, imaging: Review of instruments, methods and applications, J. Photochem. Photobiol. B: Biol. 98 (2010) 77-94.
[110] K. Licha, C. Olbrich, Optical imaging in drug discovery and diagnostic applications, Adv. Drug. Deliv. Rev. 57 (2005) 1087-1108.
[111] S. Li, J. Johnson, A. Peck, Q. Xie, Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles, J. Transl. Med. 15 (2017) 18-29.
[112] T. Lei, A. Fernandez-Fernandez, R. Manchanda, T.C. Huang, A.J. McGoron, Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser induced heating, Belstein J. Nanotechnol. 5 (2014) 313-322.
[113] M. Wang, F. Xie, X. Wen, H. Chen, H. Zhang, J. Liu, H. Zhang, H. Zou, Y. Yu, Y. Chen, Z. Sun, X. Wang, G. Zhang, C. Yin, D. Sun, J. Gao, B. Jiang, Y. Zhong, Y. Lu, Therapeutic PEG-ceramide nanomicelles synergize with salinomycin to target both liver cancer cells and cancer stem cells, Nanomedicine 12 (2017) 1025-1042.
[114] E. Dickreuter, N. Cordes, The cancer cell adhesion resistome: mechanisms, targeting and translational approaches, Biol. Chem. 398 (2017) 721-735.
[115] J.R. Nedrow, A. Josefsson, S. Park, T. Back, R.F. Hobbs, C. Brayton, F. Bruchertseifer, A. Morgenstern, G. Sgouros, Pharmacokinetics, microscale distribution and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model, EJNMMI Res. 7 (2017) 57-72.
[116] S.S. Dhule, P. Penfornis, J. He, M.R. Harris, T. Terry, V. John, R. Pochampally, The combined effect of encapsulating curcumin and C6 ceramide in liposomal nanoparticles against osteosarcoma, Mol. Pharm. 11 (2014) 417-427.
[117] Y.Y. Li, S.K. Lam, C.Y. Zheng, J.C. Ho, The effect of tumor microenvironment on autophagy and sensitivity to targeted therapy in EGFR-mutated lung adenocarcinoma, J. Cancer 6 (2015) 382-386.
[118] Y. Li, K. Atkinson, T. Zhang, Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies, Cancer Lett. 396 (2017) 103-109.
[119] W. Gao, B. Xiang, T.T. Meng, F. Liu, X.R. Qi, Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides, Biomaterials 34(2013) 4137-4149.
[120] S. Tortorella, T.C. Karagiannis, Transferrin receptor-mediated endocytosis: a useful target for cancer therapy, J. Membr. Biol. 247 (2014) 291-307.
[121] Y. Liu, J. Sun, W. Cao, J. Yang, H. Lian, X. Li, Y. Sun, Y. Wang, S. Wang, Z. He, Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery, Int. J. Pharm. 421 (2011) 160-169.
[122] S.K. Sriraman, G. Salzano, C. Sarisozen, V. Torchilin, Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid, Eur. J. Pharm. Biopharm. 105(2016) 40-49.
[123] D. Schmid, C.G. Park, C.A. Hartl, N. Subedi, A.N. Cartwright, R.B. Puerto, Y. Zheng, J. Maiarana, G.J. Freeman, K.W. Wucherpfennig, D.J. Irvine, M.S. Goldberg, T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity, Nat. Commun. 8 (2017) 1747-58.
[124] J.L. Gueant, F. Namour, R.M. Gueant-Rodriguez, J.L. Daval, Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab. 24 (2013) 279-289.
[125] J.A. Ledermann, S. Canevari, T. Thigpen, Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments, Ann. Oncol. 26 (2015) 2034-2043.
[126] A. Cheung, H.J. Bax, D.H. Josephs, K.M. Ilieva, G. Pellizzari, J. Opzoomer, J. Bloomfield, M. Fittall, A. Grigoriadis, M. Figini, S. Canevari, J.F. Spicer, A.N. Tutt, S.N. Karagiannis, Targeting folate receptor alpha for cancer treatment, Oncotarget 7 (2016) 52553-52574.
[127] C. Muller, R. Schibli, Folic acid conjugates for nuclear imaging of folate receptor–positive cancer, J. Nucl. Med. 52 (2011) 1-4.
[128] G.L. Zwicke, G.A. Mansoori, C.J. Jeffery, Utilizing the folate receptor for active targeting of cancer nanotherapeutics, Nano Rev. 3 (2012) 18496(1-11).
[129] Y.H. Ohana, T. Liron, S. Prutchi-Sagiv, M. Mittelman, M.C. Souroujon, D. Neumann, Erythropoietin, in: Abba Kastin (Ed.), Handbook of biologically active peptides, second Ed., Academic Press, Cambridge, Massachusetts, USA, 2013, pp. 1619-1626.
[130] F. Farrell, A. Lee, The erythropoietin receptor and its expression in tumor cells and other tissues, Oncologist 9 (2004) 18-30.
[131] S.N. Constantinescu, T. Keren, M. Sokolovsky, H.S. Nam, Y.I. Henis, H.F. Lodish, Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain, Proc. Natl. Acad. Sci., USA 98(2001) 4379-4384.
[132] M. Richter, H. Zhang, Receptor-targeted cancer therapy, DNA Cell Biol. 24 (2005) 271-282.
[133] S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications, Nanomaterials 6 (2016) 58(1-4).
[134] M. Yang, J. Wang, F. Zhou, Biomarker detections using functional noble metal nanoparticles, in: M. Hepel, C.J. Zhong (Eds.), Functional nanoparticles for bioanalysis, nanomedicine and bioelectronic devices, vol. 1, ACS, USA, 2012, pp. 177-205.
[135] M. Holzinger, A. Le Goff, S. Cosnier, Nanomaterials for biosensing applications: a review, Frontiers Chem. 2 (2014) 1-10.
[136] W. Putzbach, N.J. Ronkainen, Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review,Sensors 13 (2013) 4811-4840.
[137] T.Ghodselahi, S.Arsalani, T.Neishaboorynejad, Synthesis and biosensor application of Ag2Au bimetallic nanoparticles based on localized surface plasmon resonance, Appl. Surf. Sci. 301 (2014) 230-234.
[138] J. Rick, M.C. Tsai, B.J. Hwang, Biosensors incorporating bimetallic nanoparticles, Nanomaterial (Basal) 6 (2016) 5(1-30).
[139] K.K. Jain, Applications of nanobiotechnology in clinical diagnostics, Clin. Chem. 53 (2007) 2002-2009.
[140] W. Zhao, J.M. Karp, M. Ferrari, R. Serda, Bioengineering nanotechnology: towards the clinic, Nanotechnology 22 (2011) 490201(1-2).
[141] Q. Zhang, N. Iwakuma, P. Sharma, B.M. Moudgil, C. Wu, J. McNeill, H. Jiang, S.R. Grobmyer, Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography, Nanotechnology 20 (2009) 395102(1-9).
[142] J. Ando, T. Aki Yano, K. Fujita, S. Kawata, Metal nanoparticles for nano-imaging and nano-analysis, Phys. Chem. Chem. Phys. 15 (2013) 13713-13722.
[143] K. Fujita, S. Ishitobi, K. Hamada, N.I. Smith, A. Taguchi, Y. Inouye, S. Kawata, Time-resolved observation of surface enhanced Raman scattering from gold nanoparticles during transport through a living cell, J. Biomed. Opt. 14 (2009) 024038(1-7).
[144] J. Ando, K. Fujita, N.I. Smith, S. Kawata, Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett. 11 (2011) 5344-5348.
[145] P. Damborsky, J. Svitel, J. Katrlik, Optical biosensors, Essay. Biochem. 60 (2016) 91-100.
[146] C.E. Talley, L. Jusinski, C.W. Hollars, S.M. Lane, T. Huser, Intracellular pH sensors based on surface enhanced Raman scattering, Anal. Chem. 76 (2004) 7064-7068.
[147] J. Kneipp, H. Kneipp, B. Witting, K. Kneipp, One- and two-photon excited optical pH probing for cells using surface enhanced Raman and hyper Raman nanosensors, Nano Lett. 7 (2007) 2819-2823.
[148] J. Kneipp, H. Kneipp, B. Witting, K. Kneipp, Following the dynamics of pH in endosomes of live cells with SERS nanosensors, J. Phys. Chem. C 114(2010) 7421-7426.
[149] V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev. 43 (2014) 744-764.
[150] Y. Li, H. Schluesener, S. Xu, Gold nanoparticle-based biosensors, Gold Bull. 43(2010) 29-41.
[151] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles:? The influence of size, shape, and dielectric environment, J. Phys. Chem. B 107(2002) 668-677.
[152] J. Wilcoxon, Optical absorption properties of dispersed gold and silver alloy nanoparticles, J. Phys. Chem. B 113 (2009) 2647-2656.
[153] P.K. Jain, M.A. El-Sayed, Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells, Nano Lett. 7 (2007) 2854-2858.
[154] R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277 (1997) 1078-1081.
[155] C.A. Mirkin, Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks, Inorg. Chem. 39 (2000) 2258-2272.
[156] S. Moeendarbari, A. Mulgaonkar, A.S. Hande, W. Silvers, C. Zhang,Y. Liu, A.K. Pillai, X. Sun,Y. Hao, Gold nanoparticles in current biomedical applications, Rev. Nanosci. Nanotechnol. 5 (2016) 28-78.
[157] K.M. Mayer, S. Lee, H. Liao, B.C. Rostro, A. Fuentes, P.T. Scully, C.L. Nehl, J.H. Hafner, A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods, ACS Nano 2 (2008) 687-692.
[158] K.M. Mayer, F. Hao, S. Lee, P. Nordlander, J.H. Hafner, A single molecule immunoassay by localized surface plasmon resonance, Nanotechnology 21 (2010) 255503 (1-8).
[159] S. Yang, T. Wu, X. Zhao, X. Li, W. Tan, The optical property of core-shell nanosensors and detection of atrazine based on localized surface plasmon resonance (LSPR) sensing, Sensors 14 (2014) 13273-13284.
[160] G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, P.V. Baptista, Noble metal nanoparticles for biosensing applications, Sensors 12 (2012) 1657-1687.
[161] A. Ambrosi, F. Airo, A. Merkoçi, Enhanced gold nanoparticle based ELISA for a breast cancer biomarker, Anal. Chem. 82 (2010) 1151-1156.
[162] K. Kneipp, A.S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K.E. Shafer-Peltier, J.T. Motz, R.R. Dasari, M.S. Feld, Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles, Appl. Spectrosc. 56 (2002) 150-154.
[163] J.F. Hainfeld, D.N. Slatkin, T.M. Focella, H.M. Smilowitz, Gold nanoparticles: a new X-ray contrast agent, Br. J. Radiol. 79 (2006) 248-253.
[164] V. Kattumuri, K. Katti, S. Bhaskaran, E.J. Boote, S.W. Casteel, G.M. Fent, D.J. Robertson, M. Chandrasekhar, R. Kannan, K.V. Katti, Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies, Small 3 (2007) 333-341.
[165] D. Kim, S. Park, J.H. Lee, Y.Y. Jeong, S. Jon, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging, J. Am. Chem. Soc. 129 (2007) 7661-7665.
[166] D. Enders, S. Ruppa, A. Kullerc, A. Puccia, Surface enhanced infrared absorption on Aunanoparticle films deposited on SiO2/Si for optical biosensing: detection of the antibody-antigen reaction, Surf. Sci. 600 (2006) L305-L308.
[167] Y. Li, H.J. Schluesener, S. Xu, Gold nanoparticle-based biosensors, Gold Bull. 43 (2010) 29-41.
[168] L. He, M.D. Musick, S.R. Nicewarner, F.G. Salinas, S.J. Benkovic, M.J. Natan, C.D. Keating, J. Am. Chem. Soc. 122 (2000) 9071-9077.
[169] T. Liu, J. Tang, L. Jiang, The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity, Biochem. Biophys. Res. Commun. 313 (2004) 3-7.
[170] R.V. Devi, M. Doble, R.S. Verma, Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors, Biosensors Bioeletron. 68 (2015) 688-698.
[171] Y.E. Choi, J.W. Kwak, J.W. Park, Nanotechnology for early cancer detection, Sensors 10 (2010) 428-455.
[172] Y. Tauran, A. Brioude, A.W. Coleman, M. Rhimi, B. Kim, Molecular recognition by gold, silver and copper nanoparticles, World J. Biol. Chem. 4 (2013) 35.
[173] N. Nath, A. Chilkoti, Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size, Anal. Chem. 76 (2004) 5370-5378.
[174] T. Okamoto, I. Yamaguchi, T. Kobayashi, Local plasmon sensor with gold colloid monolayers deposited upon glass substrates, Opt. Lett. 25 (2000) 372-374.
[175] W. Cai, T. Gao, H. Hong, J. Sun, Applications of gold nanoparticles in cancer nanotechnology, Nanotechnol. Sci. Appl. 1 (2008) 17-32.
[176] E. Hutter, D. Maysinger, Gold nanoparticles and quantum dots for bioimaging, Microscopy Res. Tech. 74 (2011) 592-604.
[177] B. Tang, J.F. Wang, S.P. Xu, T. Afrin, W.Q. Xu, L. Sun, X.G. Wang, Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric, J. Colloid. Interface Sci. 356 (2011) 513-518.
[178] S. Loher, O.D. Schneider, T. Maienfisch, S. Bokorny, W.J. Stark, Micro-organism triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces, Small 4 (2008) 824-832.
[179] A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Silver-nanoparticle embedded antimicrobial paints based on vegetable oil, Nat. Mater. 7 (2008) 236-241.
[180] P. Jain, T. Pradeep, Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter, Biotechnol. Bioeng. 90 (2005) 59-63.
[181] K.Y. Yoon, J.H. Byeon, C.W. Park, J. Hwang, Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers, Environ. Sci. Technol. 42 (2008) 1251-1255.
[182] G. Ghosh, L. Panicker, N.N. Kumar, V. Mallick, Surface plasmon resonance of counterions coated charged silver nanoparticles and application in bio-interaction, Mater. Res. Exp. 5 (2018) 055005(1-9).
[183] R. Geagea, P.H. Aubert, P. Banet, N. Sanson, Signal enhancement of electrochemical biosensors via direct electrochemical oxidation of silver nanoparticle labels coated with zwitterionic polymers, Chem. Comm. 51 (2015) 402-405.
[184] D. Graham, K. Faulds, W.E. Smith, Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering, Chem. Commun.42 (2006) 4363-4371.
[185] P. Sistani, L. Sofimaryo, Z.R. Masoudi, A. Sayad, R. Rahimzadeh, B. Salehi, A penicillin biosensor by using silver nanoparticles, Int. J. Electrochem. Sci. 9 (2014) 6201-6212.
[186] A.J. Haes, R.P. van Duyne, A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Ceram. Soc. 124 (2002) 10596-10604.
[187] A.J. Haes, W.P. Hall, L. Chang, W.L. Klein, R.P. van Duyne, A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease, Nano Lett. 4 (2004) 1029-1034.
[188] W.J. Galush, S.A. Shelby, M.J. Mulvihill, A. Tao, P.D. Yang, J.T. Groves, A nanocube plasmonic sensor for molecular binding on membrane surfaces, Nano Lett. 9 (2009) 2077-2082.
[189] S.L. Zhu, F. Li, C.L. Du, Y.Q. Fu, A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array, Sens. Actuator B Chem. 134 (2008) 193-198.
[190] W. Zhou, Y.Y. Ma, H.A. Yang, Y. Ding, X.G. Luo, A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma, Int. J. Nanomed. 6 (2011) 381-386.
[191] G.A. Sotiriou, T. Sannomiya, A. Teleki, F. Krumeich, J. Voros, S.E. Pratsinis, Non-toxic dry-coated nanosilver for plasmonic biosensors, Adv. Funct. Mater. 20 (2010) 4250-4257.
[192] L. Chen, H. Xie, J. Li, Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode, J. Solid state Electrochem. 16 (2012) 3323-3329.
[193] V. Kravets, Z. Almemar, K. Jiang, K. Culhane, R. Machado, G. Hagen, A. Kotko, I. Dmytruk, K. Spendier, A. Pinchuk, Imaging of biological cells using luminescent silver nanoparticles, Nanoscale Res. Lett. 11 (2016) 30(1-9).
[194] A.L.C.M. daSilva, M.G. Gutierres, A. Thesing, R.M. Lattuada, J. Ferreira, SPR biosensors based on gold and silver nanoparticle multilayer films, J. Br. Chem. Soc. 25 (2014) 928-934.
[195] G.A. Sotiriou, S.E. Pratsinis, Engineering nanosilver as an antibacterial, biosensor and bioimaging material, Curr. Opin. Chem. Eng. 1 (2011) 3-10.
[196] B. Khalilzadeh, M. Hasanzadeh, S. Sanati, L. Saghatforoush, N. Shadjou, J.E.N. Dolatabadi, P. Sheikhzadeh, Preparation of a new electrochemical sensor based on cadmium oxide nanoparticles and application for determination of penicillamine, Int. J. Electrochem. Sci. 6 (2011) 4164-4175.
[197] J.E.N. Dolatabadi, M. de la Guardia, Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery and formation of complex metal nanostructures, Trends Anal. Chem. 30 (2011) 1538-1548.
[198] J.E.N. Dolatabadi, O. Mashinchian, B. Ayoubi, A.A. Jamali, A. Mobed, D. Losic, Y. Omidi, M. de la Guardia, Optical and electrochemical DNA nanobiosensors, Trends Anal. Chem.30 (2011) 459-472.
[199] A.A. Saei, P. Najafi-Marandi, A. Abhari, M. de la Guardia, J.E.N. Dolatabadi, Electrochemical biosensors for glucose based on metal nanoparticles, Trends Anal. Chem. 42 (2013) 216-227.
[200] N.C. Bigall, T. Hartling, M. Klose, P. Simon, L.M. Eng, A. Eychmuller, Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties, Nano Lett.8(2008) 4588-4592.
[201] E. Ramirez, L. Erades, K. Philippot, P. Lecante, B. Chaudret, Shape control of platinum nanoparticles, Adv. Func. Mater. 17 (2007) 2219-2228.
[202] N.V. Long, N.D. Chien, T. Hayakawa, H. Hirata, G. Lakshminarayana, M. Nogami, The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology, Nanotechnology 21 (2009) 035605 (1-16).
[203] D. Pedone, M. Moglianetti, E. de Luca, G. Bardi, P.P. Pompa, Platinum nanoparticles in medicine, Chem. Soc. Rev. 46 (2017) 4951-4975.
[204] J.A. Creighton, D.G. Eadon, Ultraviolet–visible absorption spectra of the colloidal metallic elements, J. Chem. Soc. Faraday Trans. 87 (1991) 3881-3891.
[205] P. Chylekt, Light scattering by small particles in an absorbing medium, J. Opt. Soc. Am. 67 (1977) 561-563.
[206] W.C. Mundy, J.A. Roux, A.M. Smith, Mie scattering by spheres in an absorbing medium, J. Opt. Soc. Am. 64 (1974) 1593-1597.
[207] R.E. Benfield, A.P. Maydwell, J.M. van Ruitenbeek, D.A. van Leeuwen, Electronic spectra of metal cluster molecules, Z. Phzsik D 26 (1993) 4-7.
[208] T. Yonezawa, Y. Gotoh, N. Toshima, Protecting structure model for nanoscopic platinum clusters protected by non-ionic surfactants: 13C nuclear magnetic resonance investigation, Reactive Polymer 23 (1994) 43-51.
[209] N. Toshima, K. Hirakawa, Polymer-protected Pt/Ru bimetallic cluster catalysts for visible-light-induced hydrogen generation from water and electron transfer dynamics, Appl. Surf. Sci. 121-122 (1997) 534-537.
[210] A.L. Stepanov, A.N. Golubev, S.I. Nikitin, Y.N. Osin, A review on the fabrication and properties of platinum nanoparticles, Rev. Adv. Mater. Sci. 38 (2014) 160-175.
[211] Y. Zou, C. Xiang, L.X. Sun, F. Xu, Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan−SiO2 sol−gel, Biosens. Bioelectron. 23 (2008) 1010-1016.
[212] M. Yang, Y. Yang, Y. Liu, G. Shen, R. Yu, Platinum nanoparticles−doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosens. Bioelectron. 21 (2006) 1125-1131.
[213] S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Anal. Chem. 76 (2004) 1083-1088.
[214] G.M. Leteba, C.I. Lang, Synthesis of bimetallic platinum nanoparticles for biosensors, Sensors 13 (2013) 10358-10369.
[215] S.I. Tanaka, J. Miyazaki, D.K. Tiwari, T. Jin, Y. Inouye, Fluorescent platinum nanoclusters: synthesis, purification, characterization, and application to bioimaging, Angew. Chem. Int. Ed. 50(2011) 431-435.
[216] D. Chen, C. Zhao, J. Ye, Q. Li, X. Liu, M. Su, H. Jiang, C. Amatore, M. Selke, X. Wang, In situ biosynthesis of fluorescent platinum nanoclusters: toward self-bioimaging-guided cancer theranostics, ACS Appl. Mater. Interfaces 7 (2015) 18163-18169.
[217] J.W. Hu, J.F. Li, B. Ren, D.Y. Wu, S.G. Sun, Z.Q. Tian, Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate, J. Phys. Chem. C 111 (2007) 1105-1112.
[218] J.M. McLellan, Y. Xiong, M. Hu, Y. Xia, Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages, Chem. Phys. Lett. 417 (2006) 230-234.
[219] Y. Li, G. Lu, X. Wu, G. Shi, Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering, J. Phys. Chem. B 110 (2006) 24585-24592.
[220] H. Chen, G. Wei, A. Ispas, S.G. Hickey, A. Eychmuller, Synthesis of palladium nanoparticles and their applications for surface-enhanced Raman scattering and electrocatalysis, J. Phys. Chem. C 114 (2010) 21976-21981.
[221] J. Cookson, The preparation of palladium nanoparticles, Platinum Metals Rev. 56(2012) 83-98.
[222] V.L. Nguyen, D.C. Nguyen, H. Hirata, M. Ohtaki, T. Hayakawa, M. Nogami, Chemical synthesis and characterization of palladium nanoparticles, Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 (2010) 035012(1-5).
[223] Z. Li, X. Wang, G. Wen, S. Shuang, C. Dong, M.C. Paau, M.M.F. Choi, Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor, Biosens. Bioelectron. 26 (2011) 4619-4623.
[224] N. Cheng, H. Wang, X. Li, X. Yang, L. Zhu, Amperometric glucose biosensor based on integration of glucose oxidase with palladium nanoparticles/reduced graphene oxide nanocomposite, Am. J. Anal. Chem. 3 (2012) 312-319.
[225] Z. Chang, H. Fan, K. Zhao, M. Chen, P. He, Y. Fang, Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes, Electroanalysis20(2008) 131-136.
[226] H. Heli, M. Hajjizadeh, A. Jabbari, A.A. Moosavi-Movahedi, Copper nanoparticles-modified carbon paste transducer as a biosensor for determination of acetylcholine, Biosens. Bioelectron. 24 (2009) 2328-2333.
[227] J. Shen, L. Dudik, C.C. Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor, Sensors Actuators B 125 (2007) 106-113.
[228] C.P. da Silva, A.C. Franzoi, S.C. Fernandes, J. Dupont, I.C. Vieira, Development of biosensor for phenolic compounds containing PPO in β-cyclodextrin modified support and iridium nanoparticles, Enz. Microb. Technol. 52 (2013) 296-301.
[229] E. Magner, Trends in electrochemical biosensors, Analyst 123 (1998) 1967-1970.
[230] A.A. Saei, P.N. Marandi, A. Abhari, M. de la Guardia, J.E.N. Dolatabadi, Electrochemical biosensors for glucose based on metal nanoparticles, Trends Anal. Chem. 42 (2013) 216-227.
[231] J.E.N. Dolatabadi, O. Mashinchian, B. Ayoubi, A.A. Jamali, A. Mobed, D. Losic, Y. Omidi, M de la Guardia, Optical and electrochemical DNA nanobiosensors, Trends Anal. Chem. 30 (2011) 459-472.
[232] K. Greish, Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines, J. Drug Target. 15 (2007) 457-464.
[233] M.E. Davis, Z. Chen, D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer, Nat. Rev. Drug Discov. 7 (2008) 771-782.
[234] R. Weissleder, Molecular imaging in cancer, Science 312 (2006) 1168-1171.
[235] S. Lee, X.Y. Chen, Dual-modality probes for in vivo molecular imaging, Mol. Imaging 8 (2009) 87-100.
[236] S. Gioux, H.S. Choi, J.V. Frangioni, Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation, Mol. Imaging 9 (2010) 237-255.
[237] J. Merian, J. Gravier, F. Navarro, I. Texier, Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17 (2012) 5564-5591.
[238] Z.Altintas, I.E.Tothills, Molecular biosensors: promising new tools for early detection of cancer, Nanobiosens. Disease Diagnos. 4 (2015) 1-10.
[239] S. Kunzelmann, C. Solscheid, M.R. Webb, Fluorescent biosensors: design and application to motor proteins, in: C.P. Toseland, N. Fili (Eds.), Fluorescent methods for molecular motors, Springer, Berlin, Germany, 2014, pp.25-47.
[240] O. Tagit, N. Hildebrandt, Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles, ACS Sens. 2 (2017) 31-45.
[241] V. Helms, Fluorescence resonance energy transfer, in:V. Helms (Ed.), Principles of computational cell biology, Weinheim: Wiley-VCH, 2008, p. 202.
[242] D.C. Harris, Applications of spectrophotometry, in: Quantitative chemical analysis, eighthed, W.H. Freeman and Co., New York, 2010,pp. 419-444.
[243] C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, T. Ha, Advancesinsingle-molecule fluorescence methods for molecular biology, Ann. Rev. Biochem. 77 (2008) 51-76.
[244] Y. Li, C.Y. Zhang, Analysis of microRNA-induced silencing complex-involved microRNA-target recognition by single-molecule fluorescence resonance energy transfer, Anal. Chem. 84 (2012) 5097-5102.
[245] A. Periasamy, Fluorescence resonance energy transfer microscopy: a mini review, J. Biomed. Opt. 6 (2001) 287-291.
[246] A. Shahzad, M. Knapp, I. Lang, G. Kohler, The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study, J. Cell. Mol. Med.15 (2011) 2706-2711.
[247] A.D. Kurdekar, L.A.A. Chunduri, S.M. Chelli, M.K. Haleyurgirisetty, E.P. Bulagonda, J. Zheng, I.K. Hewlett, V. Kamisetti, Fluorescent silver nanoparticle based highly sensitive immunoassay for early detection of HIV infection, RSC Adv. 7 (2017) 19863-19877.
[248] M.M. Billingsley, R.S. Riley, E.S. Day, Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods, PLoS ONE 12 (2017) e0177592 (1-15).
[249] P. Ciaurriz, F. Fernandez, E. Tellechea, J.F. Moran, A.C. Asensio, Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA), Beilstein J. Nanotechnol. 8 (2017) 244-253.
[250] F. Zhou, L. Yuan, H. Wang, D. Li, H. Chen, Gold nanoparticle layer: a promising platform for ultra-sensitive cancer detection, Langmuir, 27 (2011) 2155-2158.
[251] F. Zhou, M. Wang, L. Yuan, Z. Cheng, Z. Wu, H. Chen, Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection, Analyst. 137(2012) 1779-1784.
[252] X. Xu, H. Li, D. Hasan, R.S. Ruoff, A.X. Wang, D.L. Fan, Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis, Adv. Funct. Mater. 23 (2013) 4332-4338.
[253] S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275 (1997) 1102-1106.
[254] R. Le, C. Eric,M. Meyer, P.G. Etchegoin, Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique, J. Phys. Chem. B 110 (2006) 1944-1948.
[255] S. Laing, L.E. Jamieson, K. Faulds, D. Graham, Surface-enhanced Raman spectroscopy for in vivo biosensing, Nat. Rev. Chem. 1 (2017) 0060.
[256] E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.P. Vilcot, R. Boukherroub, S. Szunerits, Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies, Curr. Opin. Sol. Stat. Mat. Sci. 15 (2011) 208-224.
[257] U. Prabhakar, H. Maeda, R.K. Jain, E.M. Sevick-Muraca, W. Zamboni, O.C. Farokhzad, S.T. Barry, A. Gabizon, P. Grodzinski, D.C. Blakey, Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology, Cancer res. 73 (2013) 2412-2417.
[258] A.F. Frellsen, A.E. Hansen, R.I. Jølck, P.J. Kempen, G.W. Severin, P.H. Rasmussen, A.Kjær, A.T.I. Jensen, T.L. Andresen, Mouse positron emission tomography study of the biodistribution of gold nanoparticles with different surface coatings using embedded copper-64, ACS Nano 10 (2016) 9887-9898.
[259] S.B. Lee, G. Yoon, S.W. Lee, S.Y. Jeong, B.C. Ahn, D.K. Lim, J. Lee, Y.H. Jeon, Combined positron emission tomography and cerenkov luminescence imaging of sentinel lymph nodes using PEGylated radionuclide-embedded gold nanoparticles, Small 12 (2016) 4894-4901.
[260] M.M. Mahan, A.L. Doiron, Gold nanoparticles as X-ray, CT and multimodal imaging contrast agents: formulation, targeting and methodology, J. Nanomater. (2018) 5837276 (1-15).
[261] L. Yang, D.J. Watts, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett. 158(2005) 122-132.
[262] K. Donaldson, D. Brown, A. Clouter, R. Duffin, W. MacNee, L. Renwick, L. Tran, V. Stone, The pulmonary toxicology of ultrafine particles, J.Aerosol Med.15(2002) 213-220.
[263] H. Bahadar, F. Maqbool, K. Niaz, M. Abdollahi, Toxicity of nanoparticles and an overview of current experimental models, Iran. Biomed. J. 20(2016) 1-11.
[264] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small 1(2005) 325-327.
[265] E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev. 38(2009) 1759-1782.
[266] C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjug. Chem. 15(2004) 897-900.
[267] H.K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, A.K. Dasgupta, Cell selective response to gold nanoparticles, Nanomedicine 3(2007) 111-119.
[268] J. Conde, M. Larguinho, A. Cordeiro, L.R. Raposo, P.M. Costa, S. Santos, M.S. Diniz, A.R. Fernandes, P.V. Baptista, Gold-nano beacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis, Nanotoxicology 8(2014) 521-532.
[269] Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, U. Simon, W. Jahnen-Dechent, Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage, Small 5(2009) 2067-2076.
[270] K.T. Kim, T. Zaikova, J.E. Hutchison, R.L. Tanguay, Gold nanoparticles disrupt zebrafish eye development and pigmentation, Toxicol. Sci. 133(2013) 275-288.
[271] A. Gerber, M. Bundschuh, D Klingelhofer, D.A. Groneberg, Gold nanoparticles: recent aspects for human toxicology, J. Occup. Med. Toxicol. 8(2013) 32(1-6).
[272] Y.P. Jia, B.-Y. Ma, X.W. Wei, Z.-Y. Qian, The in vitro and in vivo toxicity of gold nanoparticles, Chinese Chem. Lett. 28 (2017) 691-702.
[273] X. Chen, H.J. Schluesener, Nanosilver: a nanoproduct in medical application, Toxicol. Lett. 176(2008) 1-12.
[274] S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. In Vitro 19(2005) 975-983.
[275] R. Foldbjerg, D.A. Dang, H. Autrup, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549, Arch. Toxicol. 85(2011) 743-750.
[276] A. Haase, J. Tentschert, H. Jungnickel, P. Graf, A. Mantion, F. Draude, J. Plendl, M.E. Goetz, S. Galla, A. Masic, Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses, J. Phys. Conf. Ser. 304 (2011) 012030 (1-15).
[277] J. Tang, L. Xiong, S. Wang, J. Wang, L. Liu, J. Li, F. Yuan, T. Xi, Distribution, translocation and accumulation of silver nanoparticles in rats, J. Nanosci. Nanotechnol. 9 (2009) 4924-4932.
[278] X. Feng, A. Chen, Y. Zhang, J. Wang, L. Shao, L. Wei, Central nervous system toxicity of metallic nanoparticles, Int. J. Nanomed. 10 (2015) 4321-4340.
[279] F.J. Rang, J. Boonstra, Causes and consequences of age-related changes in DNA methylation: arole for ROS? Biology (Basel) 3 (2014) 403-425.
[280] K. Brieger, S. Schiavone, F.J. Miller Jr., K.H. Krause, Reactive oxygen species: from health to disease, Swiss Med. Wkly. 142 (2012) w13659 (1–14).
[281] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Science 311 (2006) 622-627.
[282] C. Hanley, A. Thurber, C. Hanna, A. Punnoose, J. Zhang, D.G. Wingett, The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction, Nanoscale Res. Lett. 4 (2009) 1409-1420.
[283] T.C. Long, N. Saleh, R.D. Tilton, G.V. Lowry, B. Veronesi, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity, Environ. Sci. Technol. 40 (2006) 4346-4352.
[284] V. Freyre-Fonseca, N.L. Delgado-Buenrostro, E.B. Gutiérrez-Cirlos, C.M. Calderón-Torres, T. Cabellos-Avelar, Y. Sanchez-Pérez, E. Pinzón, I. Torres, E. Molina-Jijon, C. Zazueta, J. Pedraza-Chaverri, C.M. Garcia-Cuellar, Y.I. Chirino, Titanium dioxide nanoparticles impair lung mitochondrial function, Toxicol. Lett. 202 (2011) 111-119.
[285] E. Huerta-Garcia, J.A. Perez-Arizti, S.G. Marquez-Ramirez, N.L. Delgado-Buenrostro, Y.I. Chirino, G.G. Iglesias, R. Lopez-Marure, Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells, Free Radic. Biol. Med. 73(2014) 84-94.
[286] N.B. Golovina, L.M. Kustov, Toxicity of metal nanoparticles with a focus on silver, Mendeleev Commun. 23 (2013) 59-65.
[287] A.M. Schrand, M.F. Rahman, S.M. Hussain, J.J. Schlager, D.A. Smith, A.F. Syed, Metal-based nanoparticles and their toxicity assessment, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2 (2010) 544-568.
[288] R. Singla, A. Guliani, A. Kumari, S.K. Yadav, Metallic nanoparticles, toxicity issues and applications in medicine,in: S. Yadav (Ed.) Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration, Springer, Singapore, 2016, pp. 41-80.