Use of Carbon-Nanotube Based Materials in Microbial Fuel Cells


Use of Carbon-Nanotube Based Materials in Microbial Fuel Cells

Hakan Burhan, Gazi Yilmaz, Ahmet Zeytun, Harbi Calimli, Fatih Sen

Today, carbon nanotubes are extensively used for energy suppy in electrical devices due to their specific mechanical, thermal, and electrical properties. Additionally, carbon nanotubes are widely used in microbial fuel cells which provide zero carbon emission in energy supply. Carbon nanotube-based materials have good electrochemical properties for the microbial fuel cells. Also, the use of carbon nanotube-based composites in the design of microbial fuel cells is very important in a large area of application from medical devices to scaled power generation. For this purpose, in this chapter, microbial fuel cells formed by carbon nanotube-based composites were evaluated by using microbial fuel cells and the effects of microbial fuel cells.

Carbon-Based Materials, Electrochemistry, Fuel Cells, Nanomaterial, Nanotechnology

Published online 2/21/2019, 26 pages

Citation: Hakan Burhan, Gazi Yilmaz, Ahmet Zeytun, Harbi Calimli, Fatih Sen, Use of Carbon-Nanotube Based Materials in Microbial Fuel Cells, Materials Research Foundations, Vol. 46, pp 151-176, 2019


Part of the book on Microbial Fuel Cells

[1] S. Lijima, Helical Microtubules of Graphitic Varbon. Nature, 354 (1991) 56–58.
[2] W. Hoenlein, F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. V. Seidel, & E. Unger, Carbon Nanotube Applications in Microelectronics. IEEE Transactions on Components and Packaging Technologies, 27 (2004) 629–634.
[3] T.-W. C. Erik T. Thostensona, Zhifeng Renb, Advances in The Science and Technology of Carbon Nanotubes and Their Composites: A Review. Computer Language Magazine, 61 (2001) 1899–1912.
[4] P. D. Bradford & A. E. Bogdanovich, Electrical Conductivity Study of Carbon Nanotube Yarns, 3-D Hybrid Braids and Their Composites. Journal of Composite Materials, 42 (2008) 1533–1545.
[5] D. T. Savas Berber, Young-Kyun Kwon, Unusually High Thermal Conductivity of Carbon Nanotubes. 84 (2000) 4613–4616.
[6] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, & R. S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load. Science, 287 (2000) 637–640.
[7] E. L. Hopley, S. Salmasi, D. M. Kalaskar, & A. M. Seifalian, Carbon Nanotubes Leading The Way Forward in New Generation 3D Tissue Engineering. Biotechnology Advances, 32 (2014) 1000–1014.
[8] Z. Chen, Y. Yuan, H. Zhou, X. Wang, Z. Gan, F. Wang, & Y. Lu, 3D Nanocomposite Architectures from Carbon-Nanotube-Threaded Nanocrystals for High-Performance Electrochemical Energy Storage. Advanced Materials, 26 (2014) 339–345.
[9] D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, & Y. Chen, Scalable synthesis of Hierarchically Structured Carbon Nanotube-Graphene Fibres for Capacitive Energy Storage. Nature Nanotechnology, 9 (2014) 555–562.
[10] B. Esser, J. M. Schnorr, & T. M. Swager, Selective Detection of Ethylene Gas Using Carbon Nanotube-Based Devices: Utility in Determination of Fruit Ripeness. Angewandte Chemie – International Edition, 51 (2012) 5752–5756.
[11] T. Kurkina, A. Vlandas, A. Ahmad, K. Kern, & K. Balasubramanian, Label-free Detection of Few Copies of DNA with Carbon Nanotube Impedance Biosensors. Angewandte Chemie – International Edition, 50 (2011) 3710–3714.
[12] C. M. Rivera, H. J. Kwon, A. Hashmi, G. Yu, J. Zhao, J. Gao, J. Xu, W. Xue, & A. G. Dimitrov, Towards A Dynamic Clamp for Neurochemical Modalities. Sensors (Switzerland), 15 (2015) 10465–10480.
[13] X. Shi, A. Von Dem Bussche, R. H. Hurt, A. B. Kane, & H. Gao, Cell Entry of One-Dimensional Nanomaterials occurs by Tip Recognition and Rotation. Nature Nanotechnology, 6 (2011) 714–719.
[14] Y. Zhao, S. Wang, Q. Guo, M. Shen, & X. Shi, Hemocompatibility of Electrospun Halloysite Nanotube- and Carbon Nanotube-Doped Composite Poly(Lactic- Co -Glycolic Acid) Nanofibers. Journal of Applied Polymer Science, 127 (2013) 4825–4832.
[15] A. Faraj & published by Dove Press, Magnetic Single-Walled Carbon Nanotubes As Efficient Drug Delivery Nanocarriers in Breast Cancer Murine Model: Noninvasive Monitoring Using Diffusion-Weighted Magnetic Resonance İmaging as Sensitive Imaging Biomarker. International Journal of Nanomedicine, 10 (2015) 157–168.
[16] D. Cai, J. M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T. C. Chiles, D. Carnahan, K. Kempa, & Z. Ren, Highly Efficient Molecular Delivery into Mammalian Cells Using Carbon Nanotube Spearing. Nature Methods, 2 (2005) 449–454.
[17] N. W. Shi Kam, M. O’Connell, J. A. Wisdom, & H. Dai, Carbon Nanotubes as Multifunctional Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction. Proceedings of the National Academy of Sciences, 102 (2005) 11600–11605.
[18] F. Bottacchi, L. Petti, F. Späth, I. Namal, G. Tröster, T. Hertel, & T. D. Anthopoulos, Polymer-sorted (6,5) Single-Walled Carbon Nanotubes for Solution-Processed Low-Voltage Flexible Microelectronics. Applied Physics Letters, 106 (2015) 193302–193306.
[19] A. D. Franklin, M. Luisier, S. J. Han, G. Tulevski, C. M. Breslin, L. Gignac, M. S. Lundstrom, & W. Haensch, Sub-10 nm Carbon Nanotube Transistor. Nano Letters, 12 (2012) 758–762.
[20] M. Held, S. P. Schießl, D. Miehler, F. Gannott, & J. Zaumseil, Polymer/Metal Oxide Hybrid Dielectrics for Low Voltage Field-Effect Transistors with Solution-Processed, High-Mobility Semiconductors. Applied Physics Letters, 107 (2015) 1–5.
[21] B. E. Logan, Logan 2009. Exoelectrogenic Bacteria That Power Microbial Fuel Cells. Nature Reviews Microbiology, 7 (2009) 375–381.
[22] S. Choi, Microscale Microbial Fuel Cells: Advances and Challenges. Biosensors and Bioelectronics, 69 (2015) 8–25.
[23] J. E. Mink, R. M. Qaisi, B. E. Logan, & M. M. Hussain, Energy Harvesting from Organic Liquids in Micro-Sized Microbial Fuel Cells. NPG Asia Materials, 6 (2014) e89–e89.
[24] H. Ren, C. I. Torres, P. Parameswaran, B. E. Rittmann, & J. Chae, Improved Current and Power Density with A Micro-Scale Microbial Fuel Cell due to A Small Characteristic Length. Biosensors and Bioelectronics, 61 (2014) 587–592.
[25] D. Vigolo, T. T. Al-Housseiny, Y. Shen, F. O. Akinlawon, S. T. Al-Housseiny, R. K. Hobson, A. Sahu, K. I. Bedkowski, T. J. Dichristina, & H. A. Stone, Flow Dependent Performance of Microfluidic Microbial Fuel Cells. Physical Chemistry Chemical Physics, 16 (2014) 12535–12543.
[26] E. Baranitharan, M. R. Khan, D. M. R. Prasad, W. F. A. Teo, G. Y. A. Tan, & R. Jose, Effect of Biofilm Formation on The Performance of Microbial Fuel Cell for The Treatment of Palm Oil Mill Effluent. Bioprocess and Biosystems Engineering, 38 (2015) 15–24.
[27] F. J. Hernández-Fernández, A. Pérez De Los Ríos, M. J. Salar-García, V. M. Ortiz-Martínez, L. J. Lozano-Blanco, C. Godínez, F. Tomás-Alonso, & J. Quesada-Medina, Recent Progress and Perspectives in Microbial Fuel Cells For Bioenergy Generation and Wastewater Treatment. Fuel Processing Technology, 138 (2015) 284–297.
[28] H. Liu, R. Ramnarayanan, & B. E. Logan, Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science & Technology, 38 (2004) 2281–2285.
[29] B. E. Logan, M. J. Wallack, K.-Y. Kim, W. He, Y. Feng, & P. E. Saikaly, Assessment of Microbial Fuel Cell Configurations and Power Densities. Environmental Science & Technology Letters, 2 (2015) 206–214.
[30] P. F. Tee, M. O. Abdullah, I. A. W. Tan, N. K. A. Rashid, M. A. M. Amin, C. Nolasco-Hipolito, & K. Bujang, Review on Hybrid Energy Systems for Wastewater Treatment and Bio-Energy Production. Renewable and Sustainable Energy Reviews, 54 (2016) 235–246.
[31] A. A. Carmona-Martínez, E. Trably, K. Milferstedt, R. Lacroix, L. Etcheverry, & N. Bernet, Long-Term Continuous Production of H2 in A Microbial Electrolysis Cell (MEC) Treating Saline Wastewater. Water Research, 81 (2015) 149–156.
[32] T. Catal, K. L. Lesnik, & H. Liu, Suppression of Methanogenesis for Hydrogen Production in Single-Chamber Microbial Electrolysis Cells Using Various Antibiotics. Bioresource Technology, 187 (2015) 77–83.
[33] P. Kuntke, T. H. J. A. Sleutels, M. Saakes, & C. J. N. Buisman, Hydrogen Production and Ammonium Recovery From Urine by A Microbial Electrolysis Cell. International Journal of Hydrogen Energy, 39 (2014) 4771–4778.
[34] S. Cheng, H. V. M. Hamelers, B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiasse, & R. A. Rozendal, Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environmental Science and Technology, 42 (2008) 8630–8640.
[35] Y. Zhang & I. Angelidaki, Microbial Electrolysis Cells Turning to be Versatile Technology: Recent Advances and Future Challenges. Water Research, 56 (2014) 11–25.
[36] N. Jayasinghe, A. Franks, K. P. Nevin, & R. Mahadevan, Metabolic Modeling of Spatial Heterogeneity of Biofilms in Microbial Fuel Cells Reveals Substrate Limitations in Electrical Current Generation. Biotechnology Journal, 9 (2014) 1350–1361.
[37] Y. Jiang, P. Liang, C. Zhang, Y. Bian, X. Yang, X. Huang, & P. R. Girguis, Enhancing The Response of Microbial Fuel Cell Based Toxicity Sensors to Cu(II) with The Applying of Flow-Through Electrodes And Controlled Anode Potentials. Bioresource Technology, 190 (2015) 367–372.
[38] K. P. Katuri, A. M. Enright, V. O’Flaherty, & D. Leech, Microbial Analysis of Anodic Biofilm in A Microbial Fuel Cell Using Slaughterhouse Wastewater. Bioelectrochemistry, 87 (2012) 164–171.
[39] L. Lu, D. Xing, & Z. J. Ren, Microbial Community Structure Accompanied with Electricity Production in A Constructed Wetland Plant Microbial Fuel Cell. Bioresource Technology, 195 (2015) 115–121.
[40] N. S. Malvankar, M. T. Tuominen, & D. R. Lovley, Biofilm Conductivity is a Decisive Variable for High-Current-Density Geobacter Sulfurreducens Microbial Fuel Cells. Energy and Environmental Science, 5 (2012) 5790–5797.
[41] Y. Li, Photosynthetic Conversion of CO2 To Acetic Acid by An Inorganic-Biological Hybrid System. Science China Materials, 59 (2016) 93–94.
[42] K. K. Sakimoto, A. B. Wong, & P. Yang, Self-Photosensitization of Nonphotosynthetic Bacteria for Solar-to-Chemical Production. 351 (2016) 74–77.
[43] Z. Wang, Y. Zheng, Y. Xiao, S. Wu, Y. Wu, Z. Yang, & F. Zhao, Analysis of Oxygen Reduction and Microbial Community of Air-Diffusion Biocathode in Microbial Fuel Cells. Bioresource Technology, 144 (2013) 74–79.
[44] X. Xia, J. C. Tokash, F. Zhang, P. Liang, X. Huang, & B. E. Logan, Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells. Environmental Science & Technology, 47 (2013) 2085–2091.
[45] S. Ci, P. Cai, Z. Wen, & J. Li, Graphene-Based Electrode Materials for Microbial Fuel Cells. Science China Materials, 58 (2015) 496–509.
[46] E. Antolini, Composite Materials for Polymer Electrolyte Membrane Microbial Fuel Cells. Biosensors and Bioelectronics, 69 (2015) 54–70.
[47] Mustakeem, Electrode Materials for Microbial Fuel Cells: Nanomaterial Approach. Materials for Renewable and Sustainable Energy, 4 (2015) 1–11.
[48] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, & R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes. Science, 273 (1996) 483–487.
[49] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, & J. E. Fischer, Large-Scale Production of Single-Walled Carbon Nanotubes by The Electric-Arc Technique. Nature, 388 (1997) 756–758.
[50] A. M. Cassell, J. A. Raymakers, J. Kong, & H. Dai, Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 103 (1999) 6484–6492.
[51] R. T. K. Baker, Catalytic Growth of Carbon Filaments. Carbon, 27 (1989) 315–323.
[52] C. Journet & P. Bernier, Production of Carbon Nanotubes. Applied Physics A: Materials Science & Processing, 67 (1998) 1–9.
[53] Y. Yildiz, H. Pamuk, Ö. Karatepe, Z. Dasdelen, & F. Sen, Carbon Black Hybrid Material Furnished Monodisperse Platinum Nanoparticles as Highly Efficient and Reusable Electrocatalysts for Formic Acid Electro-Oxidation. RSC Advances, 6 (2016) 32858–32862.
[54] B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, & F. Şen, Monodisperse Pt(0)/DPA@GO Nanoparticles as Highly Active Catalysts for Alcohol Oxidation and Dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41 (2016) 5661–5669.
[55] E. Erken, Y. Yıldız, B. Kilbaş, & F. Şen, Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C1 to C3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5944–5950.
[56] G. Baskaya, I. Esirden, E. Erken, F. Sen, & M. Kaya, Synthesis of 5-Substituted-1H-Tetrazole Derivatives Using Monodisperse Carbon Black Decorated Pt Nanoparticles as Heterogeneous Nanocatalysts. Journal of Nanoscience and Nanotechnology, 17 (2017) 1992–1999.
[57] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, & F. Şen, Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide With The High Catalytic Activity And Reusability in The Dehydrogenation of Dimethylamine-borane. International Journal of Hydrogen Energy, 3 (2018) 2–8.
[58] B. Sen, S. Kuzu, E. Demir, S. Akocak, & F. Sen, Polymer-graphene Hybride Decorated Pt Nanoparticles as Highly Efficient and Reusable Catalyst for The Dehydrogenation of Dimethylamine–Borane at Room Temperature. International Journal of Hydrogen Energy, 42 (2017) 23284–23291.
[59] B. Sen, S. Kuzu, E. Demir, S. Akocak, & F. Sen, Highly Monodisperse RuCo Nanoparticles Decorated on Functionalized Multiwalled Carbon Nanotube with The Highest Observed Catalytic Activity in The Dehydrogenation of Dimethylamine−borane. International Journal of Hydrogen Energy, 42 (2017) 23292–23298.
[60] E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, O. M. Kalfa, & F. Şen, New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Cluster Science, 27 (2016) 9–23.
[61] B. Çelik, Y. Yildiz, H. Sert, E. Erken, Y. Koşkun, & F. Şen, Monodispersed Palladium-Cobalt Alloy Nanoparticles Assembled on Poly(N-Vinyl-Pyrrolidone) (PVP) as A Highly Effective Catalyst for Dimethylamine Borane (DMAB) Dehydrocoupling. RSC Advances, 6 (2016) 24097–24102.
[62] N. Karousis, N. Tagmatarchis, & D. Tasis, Current Progress on the Chemical Modification of Carbon Nanotubes. Chemical Reviews, 110 (2010) 5366–5397.
[63] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, & M. Prato, Decorating Carbon Nanotubes With Metal or Semiconductor Nanoparticles. Journal of Materials Chemistry, 17 (2007) 2679–2694.
[64] D. P. Dubal, G. S. Gund, C. D. Lokhande, & R. Holze, Decoration of Spongelike Ni(OH)2 Nanoparticles onto Mwcnts Using An Easily Manipulated Chemical Protocol for Supercapacitors. ACS Applied Materials and Interfaces, 5 (2013) 2446–2454.
[65] M. T. Byrne & Y. K. Guin’Ko, Recent advances in Research on Carbon Nanotube-Polymer Composites. Advanced Materials, 22 (2010) 1672–1688.
[66] S. W. Lee, N. Yabuuchi, B. M. Gallant, S. Chen, B. S. Kim, P. T. Hammond, & Y. Shao-Horn, High-power Lithium Batteries from Functionalized Carbon-Nanotube Electrodes. Nature Nanotechnology, 5 (2010) 531–537.
[67] M. N. Hyder, S. W. Lee, F. Ç. Cebeci, D. J. Schmidt, Y. Shao-Horn, & P. T. Hammond, Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano, 5 (2011) 8552–8561.
[68] H. Paloniemi, M. Lukkarinen, T. Ääritalo, S. Areva, J. Leiro, M. Heinonen, K. Haapakka, & J. Lukkari, Layer-by-Layer Electrostatic Self-Assembly of Single-Wall Carbon Nanotube Polyelectrolytes. Langmuir, 22 (2006) 74–83.
[69] M. H. Merrill & C. T. Sun, Fast, Simple And Efficient Assembly of Nanolayered Materials and Devices. Nanotechnology, 20 (2009) 075606-13.
[70] F. S. Gittleson, D. J. Kohn, X. Li, & A. D. Taylor, Improving The Assembly Speed, Quality, and Tunability of Thin Conductive Multilayers. ACS Nano, 6 (2012) 3703–3711.
[71] A. A. Yazdi, L. D’Angelo, N. Omer, G. Windiasti, X. Lu, & J. Xu, Carbon Nanotube Modification of Microbial Fuel Cell Electrodes. Biosensors and Bioelectronics, 85 (2016) 536–552.
[72] M. Ghasemi, M. Ismail, S. K. Kamarudin, K. Saeedfar, W. R. W. Daud, S. H. A. Hassan, L. Y. Heng, J. Alam, & S.-E. Oh, Carbon Nanotube As an Alternative Cathode Support and Catalyst for Microbial Fuel Cells. Applied Energy, 102 (2013) 1050–1056.
[73] Y. Yıldız, İ. Esirden, E. Erken, E. Demir, M. Kaya, & F. Şen, Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by MW-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes. ChemistrySelect, 1 (2016) 1695–1701.
[74] E. Erken, I. Esirden, M. Kaya, & F. Sen, A Rapid and Novel Method for The Synthesis of 5-Substituted 1H-Tetrazole Catalyzed by Exceptional Reusable Monodisperse Pt NPs@AC under The Microwave Irradiation. RSC Advances, 5 (2015) 68558–68564.
[75] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, & F. Şen, Carbon-nanotube-based Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature. Journal of Colloid and Interface Science, 530 (2018) 321–327.
[76] G. Başkaya, Y. Yıldız, A. Savk, T. O. Okyay, S. Eriş, H. Sert, & F. Şen, Rapid, Sensitive, and Reusable Detection of Glucose By Highly Monodisperse Nickel Nanoparticles Decorated Functionalized Multi-Walled Carbon Nanotubes. Biosensors and Bioelectronics, 91 (2017) 728–733.
[77] R. Ulus, Y. Yıldız, S. Eriş, B. Aday, F. Şen, & M. Kaya, Functionalized Multi-Walled Carbon Nanotubes (f-MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives. ChemistrySelect, 1 (2016) 3861–3865.
[78] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, & F. Şen, Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. International Journal of Hydrogen Energy, 41 (2016) 3093–3101.
[79] S. Sen, F. Sen, A. A. Boghossian, J. Zhang, & M. S. Strano, Effect of Reductive Dithiothreitol And Trolox on Nitric Oxide Quenching of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 117 (2013) 593–602.
[80] F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, & M. S. Strano, Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy. ACS Nano, 6 (2012) 10632–10645.
[81] N. M. Iverson, P. W. Barone, M. Shandell, L. J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T. P. McNicholas, N. Reuel, N. M. A. Parry, G. N. Wogan, & M. S. Strano, In vivo Biosensing via Tissue-Localizable Near-İnfrared-Fluorescent Single-Walled Carbon Nanotubes. Nature Nanotechnology, 8 (2013) 873–880.
[82] Z. W. Ulissi, F. Sen, X. Gong, S. Sen, N. Iverson, A. A. Boghossian, L. C. Godoy, G. N. Wogan, D. Mukhopadhyay, & M. S. Strano, Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using İnternalized, Near-İnfrared Fluorescent Carbon Nanotube Nanosensors. Nano Letters, 14 (2014) 4887–4894.
[83] Z. D. Lin, S. J. Young, & S. J. Chang, CO2 Gas Sensors Based on Carbon Nanotube Thin Films Using a Simple Transfer Method on Flexible Substrate. IEEE Sensors Journal, 15 (2015) 7017–7020.
[84] A. Abdelhalim, A. Abdellah, G. Scarpa, & P. Lugli, Fabrication of Carbon Nanotube Thin Films on Flexible Substrates by Spray Deposition and Transfer Printing. Carbon, 61 (2013) 72–79.
[85] E. Sunden, J. K. Moon, C. P. Wong, W. P. King, & S. Graham, Microwave Assisted Patterning of Vertically Aligned Carbon Nanotubes onto Polymer Substrates. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 24 (2006) 1947–1950.
[86] S. K. Chang-Jian, J. R. Ho, J. W. J. Cheng, & C. K. Sung, Fabrication of Carbon Nanotube Field Emission Cathodes in Patterns by A Laser Transfer Method. Nanotechnology, 17 (2006) 1184–1187.
[87] P. D. Bradford, X. Wang, H. Zhao, & Y. T. Zhu, Tuning The Compressive Mechanical Properties of Carbon Nanotube Foam. Carbon, 49 (2011) 2834–2841.
[88] S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutiérrez, & F. Del Monte, Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes and/or Graphene: Synthesis and Applications. Chemical Society Reviews, 42 (2013) 794–830.
[89] X. Cheng, K. Ye, D. Zhang, K. Cheng, Y. Li, B. Wang, G. Wang, & D. Cao, Methanol Electrooxidation on Flexible Multi-Walled Carbon Nanotube-Modified Sponge-Based Nickel Electrode. Journal of Solid State Electrochemistry, 19 (2015) 3027–3034.
[90] R. Du, Q. Zhao, N. Zhang, & J. Zhang, Macroscopic Carbon Nanotube-based 3D Monoliths. Small, 11 (2015) 3263–3289.
[91] S. Jung & M. Daniels, Conceptualizing Sex Offender Denial from A Multifaceted Framework: Investigating The Psychometric Qualities of A New İnstrument. Journal of Addictions and Offender Counseling, 33 (2012) 2–17.
[92] R. R. Kohlmeyer, M. Lor, J. Deng, H. Liu, & J. Chen, Preparation of Stable Carbon Nanotube Aerogels with High Electrical Conductivity and Porosity. Carbon, 49 (2011) 2352–2361.
[93] M. A. Worsley, S. O. Kucheyev, J. D. Kuntz, T. Y. Olson, T. Y.-J. Han, A. V. Hamza, J. H. Satcher, & T. F. Baumann, Carbon Scaffolds for Stiff and Highly Conductive Monolithic Oxide–Carbon Nanotube Composites. Chemistry of Materials, 23 (2011) 3054–3061.
[94] T. Bordjiba, M. Mohamedi, & L. H. Dao, New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced Materials, 20 (2008) 815–819.
[95] X. Dong, J. Chen, Y. Ma, J. Wang, M. B. Chan-Park, X. Liu, L. Wang, W. Huang, & P. Chen, Superhydrophobic and Superoleophilic Hybrid Foam of Graphene and Carbon Nanotube for Selective Removal of Oils or Organic Solvents from The Surface of Water. Chemical Communications, 48 (2012) 10660–62.
[96] A. M. Speers & G. Reguera, Electron Donors Supporting Growth and Electroactivity of Geobacter Sulfurreducens Anode Biofilms. Applied and Environmental Microbiology, 78 (2012) 437–444.
[97] A. Kumar, D. Karig, R. Acharya, S. Neethirajan, P. P. Mukherjee, S. Retterer, & M. J. Doktycz, Microscale Confinement Features Can Affect Biofilm Formation. Microfluidics and Nanofluidics, 14 (2013) 895–902.
[98] G. Kavoosi, S. M. M. Dadfar, S. M. A. Dadfar, F. Ahmadi, & M. Niakosari, Investigation of Gelatin/Multi-Walled Carbon Nanotube Nanocomposite Films as Packaging Materials. Food Science & Nutrition, 2 (2014) 65–73.
[99] J. H. Lee, J. Y. Lee, S. H. Yang, E. J. Lee, & H. W. Kim, Carbon Nanotube-Collagen Three-Dimensional Culture of Mesenchymal Stem Cells Promotes Expression of Neural Phenotypes and Secretion of Neurotrophic Factors. Acta Biomaterialia, 10 (2014) 4425–4436.
[100] K. Sui, Y. Li, R. Liu, Y. Zhang, X. Zhao, H. Liang, & Y. Xia, Biocomposite Fiber of Calcium Alginate/Multi-Walled Carbon Nanotubes with Enhanced Adsorption Properties for Ionic Dyes. Carbohydrate Polymers, 90 (2012) 399–406.
[101] P. E. Canavar, E. Ekşin, & A. Erdem, Electrochemical Monitoring of The Interaction between Mitomycin C and DNA at Chitosan-Carbon Nanotube Composite Modified Electrodes. Turkısh Journal Of Chemıstry, 39 (2015) 1–12.
[102] F. Dalcanale, J. Grossenbacher, G. Blugan, M. R. Gullo, J. Brugger, H. Tevaearai, T. Graule, & J. Kuebler, CNT and PDCs: A Fruitful Association? Study of a Polycarbosilane-MWCNT Composite. Journal of the European Ceramic Society, 35 (2015) 2215–2224.
[103] L. D. Tijing, C. H. Park, W. L. Choi, M. T. G. Ruelo, A. Amarjargal, H. R. Pant, I. T. Im, & C. S. Kim, Characterization and Mechanical Performance Comparison of Multiwalled Carbon Nanotube/Polyurethane Composites Fabricated by Electrospinning and Solution Casting. Composites Part B: Engineering, 44 (2013) 613–619.
[104] J. R. Bautista-Quijano, P. Pötschke, H. Brünig, & G. Heinrich, Strain Sensing, Electrical and Mechanical Properties of Polycarbonate/Multiwall Carbon Nanotube Monofilament Fibers Fabricated by Melt Spinning. Polymer, 82 (2016) 181–189.
[105] R. Ormsby, T. McNally, P. O’Hare, G. Burke, C. Mitchell, & N. Dunne, Fatigue and Biocompatibility Properties of A Poly(Methyl Methacrylate) Bone Cement With Multi-Walled Carbon Nanotubes. Acta Biomaterialia, 8 (2012) 1201–1212.
[106] V. Vinoth, J. J. Wu, A. M. Asiri, T. Lana-Villarreal, P. Bonete, & S. Anandan, SnO2-Decorated Multiwalled Carbon Nanotubes and Vulcan Carbon Through A Sonochemical Approach for Supercapacitor Applications. Ultrasonics Sonochemistry, 29 (2016) 205–212.
[107] S. Eris, Z. Daşdelen, Y. Yıldız, & F. Sen, Nanostructured Polyaniline-rGO Decorated Platinum Catalyst with Enhanced Activity and Durability for Methanol Oxidation. International Journal of Hydrogen Energy, 43 (2018) 1337–1343.
[108] S. Eris, Z. Daşdelen, & F. Sen, Enhanced Electrocatalytic Activity and Stability of Monodisperse Pt Nanocomposites for Direct Methanol Fuel Cells. Journal of Colloid and Interface Science, 513 (2018) 767–773.
[109] S. Eris, Z. Daşdelen, & F. Sen, Investigation of Electrocatalytic Activity and Stability Of Pt@F-VC Catalyst Prepared by In-situ Synthesis for Methanol Electrooxidation. International Journal of Hydrogen Energy, 43 (2018) 385–390.
[110] Z. Daşdelen, Y. Yıldız, S. Eriş, & F. Şen, Enhanced Electrocatalytic Activity and Durability of Pt Nanoparticles Decorated on GO-PVP Hybride Material for Methanol Oxidation Reaction. Applied Catalysis B: Environmental, 219 (2017) 511–516.
[111] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, & F. Şen, Different Ligand Based Monodispersed Pt Nanoparticles Decorated with rGO As Highly Active and Reusable Catalysts for The Methanol Oxidation. International Journal of Hydrogen Energy, 42 (2017) 13061–13069.
[112] Ö. Karatepe, Y. Yıldız, H. Pamuk, S. Eris, Z. Dasdelen, & F. Sen, Enhanced Electrocatalytic Activity And Durability of Highly Monodisperse Pt@PPy–PANI Nanocomposites as A Novel Catalyst for The Electro-Oxidation of Methanol. RSC Advances, 6 (2016) 50851–50857.
[113] Y. Yıldız, E. Erken, H. Pamuk, H. Sert, & F. Şen, Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5951–5958.
[114] P. Nayak, B. Anbarasan, & S. Ramaprabhu, Fabrication of Organophosphorus Biosensor Using Zno Nanoparticle-Decorated Carbon Nanotube-Graphene Hybrid Composite Prepared by A Novel Green Technique. Journal of Physical Chemistry C, 117 (2013) 13202–13209.
[115] Z. Wen, S. Ci, S. Mao, S. Cui, G. Lu, K. Yu, S. Luo, Z. He, & J. Chen, TiO2 Nanoparticles-Decorated Carbon Nanotubes for Significantly Improved Bioelectricity Generation in Microbial Fuel Cells. Journal of Power Sources, 234 (2013) 100–106.
[116] A. Mehdinia, E. Ziaei, & A. Jabbari, Multi-Walled Carbon Nanotube/SnO2 Nanocomposite: A Novel Anode Material for Microbial Fuel Cells. Electrochimica Acta, 130 (2014) 512–518.
[117] H. Ren, S. Pyo, J. I. Lee, T. J. Park, F. S. Gittleson, F. C. C. Leung, J. Kim, A. D. Taylor, H. S. Lee, & J. Chae, A High Power Density Miniaturized Microbial Fuel Cell Having Carbon Nanotube Anodes. Journal of Power Sources, 273 (2015) 823–830.
[118] C. V. Rao, C. R. Cabrera, & Y. Ishikawa, In Search of The Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for The Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 1 (2010) 2622–2627.
[119] D. Zhu, D. Bin Wang, T. shun Song, T. Guo, P. Ouyang, P. Wei, & J. Xie, Effect of Carbon Nanotube Modified Cathode by Electrophoretic Deposition Method on The Performance of Sediment Microbial Fuel Cells. Biotechnology Letters, 37 (2015) 101–107.
[120] Q. Zhang, J. Q. Huang, W. Z. Qian, Y. Y. Zhang, & F. Wei, The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small, 9 (2013) 1237–1265.
[121] P. Narayanaswamy Venkatesan & S. Dharmalingam, Characterization and Performance Study on Chitosan-Functionalized Multi Walled Carbon Nano Tube as Separator in Microbial Fuel Cell. Journal of Membrane Science, 435 (2013) 92–98.