Carbon Nanotube Based Anodes and Cathodes for Microbial Fuel Cells


Carbon Nanotube Based Anodes and Cathodes for Microbial Fuel Cells

Naveen Patel, Dhananjai Rai, Deepak Chauhan, Shraddha Shahane, Umesh Mishra, Biswanath Bhunia

Microbial fuel cell (MFC) is one of the natural cordial efficient power vitality sources which have the capability to convert chemical energy into electrical energy from wastewater and microorganisms as a biocatalyst. However, the low power production and the high cost of electrodes have limited application of MFCs. One of the important factors which affect the overall performance of MFC is an electrode. The carbon nanotube has become a potent electrode material owing to its exceptional features. This book chapter provides an overview of electrode materials based on carbon nanotube for MFC operations, which will be the promising candidates for better MFC operations and other bio-electrochemical systems. Hence, these electrodes will ultimately help in achieving sustainable water/wastewater treatment and bioenergy production.

Biocatalyst, Electrode, Carbon Nanotube, Bio-Electrochemical Systems and Bioenergy

Published online 2/21/2019, 26 pages

Citation: Naveen Patel, Dhananjai Rai, Deepak Chauhan, Shraddha Shahane, Umesh Mishra, Biswanath Bhunia, Carbon Nanotube Based Anodes and Cathodes for Microbial Fuel Cells, Materials Research Foundations, Vol. 46, pp 125-150, 2019


Part of the book on Microbial Fuel Cells

[1] E.I. Administration, Annual energy review 2011, U.S. Energy Information, Administration, Office of Energy Statistics, U.S. Department of Energy, DOE/EIA-0384 (2011).
[2] W.G.I.P.O.C. Change, I.P.O.C. Change, Climate change 2007: contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. 2. Impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press 2007.
[3] M. Greenberg, Energy sources, public policy, and public preferences: analysis of US national and site-specific data, Energy Policy. 37 (2009) 3242-3249.
[4] H.S. Lee, P. Parameswaran, A.K. Marcus, C.I. Torres, B.E. Rittmann, Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates, Water Res. 42 (2008) 1501-1510.
[5] B. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells, Environ. Sci. Technol. 41 (2007) 3341-3346.
[6] H. Liu, R. Ramnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol. 38 (2004) 2281-2285.
[7] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology, Environ. Sci. Technol. 40 (2006) 5181-5192.
[8] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresour Technol. 102 (2011) 9335-9344.
[9] M. Zhou, M. Chi, J. Luo, H. He, T. Jin, An overview of electrode materials in microbial fuel cells, J. Power Sources. 196 (2011) 4427-4435.
[10] A. Rinaldi, B. Mecheri, V. Garavaglia, S. Licoccia, P.D. Nardo, E. Traversa, Engineering materials and biology to boost performance of microbial fuel cells: a critical review, Environ. Sci. Technol. 1 (2008) 417-429.
[11] N. Kim, Y. Choi, S. Jung, S. Kim, Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris, Biotechnol. Bioeng. 70 (2000) 109-114.<109::AID-BIT11>3.0.CO;2-M
[12] P. Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes, Bioresour. Technol. 99 (2008) 8895-8902.
[13] H. Liu, S. Cheng, B.E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol. 39 (2005) 5488-5493.
[14] B. Min, B.E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environ. Sci. Technol. 38 (2004) 5809-5814.
[15] Y. Qiao, C.M. Li, S.J. Bao, Q.L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells, J. Power Sources. 170 (2007) 79-84.
[16] S.R. Crittenden, C.J. Sund, J.J. Sumner, Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer, Langmuir. 22 (2006) 9473-9476.
[17] C. Dumas, R. Basseguy, A. Bergel, Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes, Electrochim Acta. 53 (2008) 5235-5241.
[18] A.T. Heijne, H.V. Hamelers, M. Saakes, C.J. Buisman, Performance of non-porous graphite and titanium-based anodes in microbial fuel cells, Electrochim. Acta. 53 (2008) 5697-5703.
[19] H. Richter, K. McCarthy, K.P. Nevin, J.P. Johnson, V.M. Rotello, D.R. Lovley, Electricity generation by Geobacter sulfurreducens attached to gold electrodes, Langmuir. 24 (2008) 4376-4379.
[20] L.C. Nagle, J.F. Rohan, Aligned carbon nanotube–Pt composite fuel cell catalyst by template electrodeposition, J. Power Sources. 185 (2008) 411-418.
[21] C. Du, J. Yeh, N. Pan, Carbon nanotube thin films with ordered structures, J. Mater. Chem. 15 (2005) 548-550.
[22] H.J. Kim, H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, B.H. Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol. 30 (2002) 145-152.
[23] Z. He, S.D. Minteer, L.T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol. 39 (2005) 5262-5267.
[24] S. Ishii, K. Watanabe, S. Yabuki, B.E. Logan, Y. Sekiguchi, Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell, Appl. Environ. Microbiol. 74 (2008) 7348-7355.
[25] Y. Ahn, B.E. Logan, Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures, Bioresour. Technol. 101 (2010) 469-475.
[26] K. Rabaey, W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends Biotechno. 23 (2005) 291-298.
[27] S. Cheng, B.E. Logan, Sustainable and efficient biohydrogen production via electrohydrogenesis, Proc. Natl. Acad. Sci. 104 (2007) 18871-18873.
[28] X. Wang, S. Cheng, Y. Feng, M.D. Merrill, T. Saito, B.E. Logan, Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells, Environ. Sci. Technol. 43 (2009) 6870-6874.
[29] X. Tang, K. Guo, H. Li, Z. Du, J. Tian, Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes, Bioresour. Technol. 102 (2011) 3558-3560.
[30] Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen, H. Liu, Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells, Biosens. Bioelectron. 26 (2011) 1908-1912.
[31] K. Scott, G. Rimbu, K. Katuri, K. Prasad, I. Head, Application of modified carbon anodes in microbial fuel cells, Process Saf. Environ. Prot. 85 (2007) 481-488.
[32] D.A. Lowy, L.M. Tender, J.G. Zeikus, D.H. Park, D.R. Lovley, Harvesting energy from the marine sediment–water interface II: Kinetic activity of anode materials, Biosens. Bioelectron. 21 (2006) 2058-2063.
[33] K. Wang, Y. Liu, S. Chen, Improved microbial electrocatalysis with neutral red immobilized electrode, J. Power Sources. 196 (2011) 164-168.
[34] J.R. Kim, B. Min, B.E. Logan, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Appl. Microbiol. Biotechnol. 68 (2005) 23-30.
[35] K. Watanabe, Recent developments in microbial fuel cell technologies for sustainable bioenergy, J. Biosci. Bioeng. 106 (2008) 528-536.
[36] H. Yazdi, S.M. Carver, A.D. Christy, O.H. Tuovinen, Cathodic limitations in microbial fuel cells: an overview, J. Power Sources. 180 (2008) 683-694.
[37] M. Rosenbaum, F. Zhao, M. Quaas, H. Wulff, U. Schröder, F. Scholz, Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells, Appl. Catal. B 74 (2007) 261-269.
[38] S.R. Higgins, D. Foerster, A. Cheung, C. Lau, O. Bretschger, S.D. Minteer, K. Nealson, P. Atanassov, M.J. Cooney, Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation, Enzyme Microb. Technol. 48 (2011) 458-465.
[39] Y. Zou, C. Xiang, L. Yang, L.X. Sun, F. Xu, Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, Int. J, Hydrogen Energ. 33 (2008) 4856-4862.
[40] B.E. Logan, J.M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol. 14 (2006) 512-518.
[41] J.R. Kim, S.H. Jung, J.M. Regan, B.E. Logan, Electricity generation and microbial community analysis of alcohol powered microbial fuel cells, Bioresour. Technol. 98 (2007) 2568-2577.
[42] T. Sharma, A.L.M. Reddy, T. Chandra, S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell, Int. J. Hydrogen Energ. 33 (2008) 6749-6754.
[43] J. Shen, Y. Hu, C. Li, C. Qin, M. Ye, Pt–Co supported on single-walled carbon nanotubes as an anode catalyst for direct methanol fuel cells, Electrochim. Acta. 53 (2008) 7276-7280.
[44] S. Timur, U. Anik, D. Odaci, L. Gorton, Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes, Electrochem. Commun. 9 (2007) 1810-1815.
[45] H. Dai, Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res. 35 (2002) 1035-1044.
[46] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, Trends Analyt. Chem. 25 (2006) 480-489.
[47] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B 104 (2000) 2794-2809.
[48] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, Trends Analyt. Chem. 25 (2006) 480-489.
[49] H. Tang, J. Chen, Z. Huang, D. Wang, Z. Ren, L. Nie, Y. Kuang, S. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays, Carbon. 42 (2004) 191-197.
[50] A. Kannan, P. Kanagala, V. Veedu, Development of carbon nanotubes based gas diffusion layers by in situ chemical vapor deposition process for proton exchange membrane fuel cells, J. Power Sources. 192 (2009) 297-303.
[51] H.Y. Tsai, C.C. Wu, C.Y. Lee, E.P. Shih, Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes, J. Power Sources. 194 (2009) 199-205.
[52] G. Pastorin, K. Kostarelos, M. Prato, A. Bianco, functionalized carbon nanotubes: towards the delivery of therapeutic molecules, J. Biomed. Nanotech. 1 (2005) 1-10.
[53] C. Journet, P. Bernier, Production of carbon nanotubes, Appl. Phys. A Mater. Sci. Process. 67 (1998) 1-9.
[54] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, Crystalline ropes of metallic carbon nanotubes, Science. 273 (1996) 483-487.
[55] A.M. Cassell, J.A. Raymakers, J. Kong, H. Dai, Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. 103 (1999) 6484-6492.
[56] N. Karousis, N. Tagmatarchis, D. Tasis, Current progress on the chemical modification of carbon nanotubes, Chem. Rev. 110 (2010) 5366-5397.
[57] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, J. Mater. Chem. 17 (2007) 2679-2694.
[58] D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Decoration of spongelike Ni (OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors, ACS Appl. Mater. Interf. 5 (2013) 2446-2454.
[59] S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.S. Kim, P.T. Hammond, Y.S. Horn, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol. 5 (2010) 531.
[60] M.T. Byrne, Y.K. Gun’ko, Recent advances in research on carbon nanotube–polymer composites, Adv. Mater. 22 (2010) 1672-1688.
[61] M.N. Hyder, S.W. Lee, F.Ç. Cebeci, D.J. Schmidt, Y.S. Horn, P.T. Hammond, Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications, ACS Nano. 5 (2011) 8552-8561.
[62] S.W. Lee, B.S. Kim, S. Chen, Y.S. Horn, P.T. Hammond, Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications, J. Am. Chem. Soc. 131 (2008) 671-679.
[63] H. Paloniemi, M. Lukkarinen, T. Ääritalo, S. Areva, J. Leiro, M. Heinonen, K. Haapakka, J. Lukkari, Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes, Langmuir. 22 (2006) 74-83.
[64] M. Merrill, C. Sun, Fast, simple and efficient assembly of nanolayered materials and devices, Nanotechnology. 20 (2009) 075606.
[65] F.S. Gittleson, D.J. Kohn, X. Li, A.D. Taylor, Improving the assembly speed, quality, and tunability of thin conductive multilayers, ACS Nano. 6 (2012) 3703-3711.
[66] A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J.W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. Forró, Cellular toxicity of carbon-based nanomaterials, Nano Lett. 6 (2006) 1121-1125.
[67] J. Chen, W. Li, D. Wang, S. Yang, J. Wen, Z. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors, Carbon. 40 (2002) 1193-1197.
[68] J.J. Sun, H.Z. Zhao, Q.Z. Yang, J. Song, A. Xue, A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell, Electrochim. Acta. 55 (2010) 3041-3047.
[69] X. Xie, L. Hu, M. Pasta, G.F. Wells, D. Kong, C.S. Criddle, Y. Cui, Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells, Nano Lett. 11 (2010) 291-296.
[70] P. Liang, H. Wang, X. Xia, X. Huang, Y. Mo, X. Cao, M.J.B. Fan, Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells, Biosens. Bioelectron. 26 (2011) 3000-3004.
[71] J.E. Mink, M.M. Hussain, Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode, ACS Nano. 7 (2013) 6921-6927.
[72] Y. Wang, B. Li, D. Cui, X. Xiang, W. Li, Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell, Biosens. Bioelectron. 51 (2014) 349-355.
[73] S. Matsumoto, K. Yamanaka, H. Ogikubo, H. Akasaka, N. Ohtake, Carbon nanotube dispersed conductive network for microbial fuel cells, Appl. Phys. Lett. 105 (2014) 083904.
[74] Y. Fu, J. Yu, Y. Zhang, Y. Meng, Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells, Appl. Surf. Sci. 317 (2014) 84-89.
[75] C. Erbay, G. Yang, P. de Figueiredo, R. Sadr, C. Yu, A. Han, Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells, J. Power Sources. 298 (2015) 177-183.
[76] H.F. Cui, L. Du, P.B. Guo, B. Zhu, J.H. Luong, Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode, J. Power Sources. 283 (2015) 46-53.
[77] E. Yoo, T. Okada, T. Kizuka, J. Nakamura, Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells, J. Power Sources. 180 (2008) 221-226.
[78] T. Ralph, M. Hogarth, Catalysis for low temperature fuel cells, Platin. Met. Rev. 46 (2002) 117-135.
[79] U. Paulus, A. Wokaun, G. Scherer, T. Schmidt, V. Stamenkovic, V. Radmilovic, N. Markovic, P. Ross, Oxygen reduction on carbon-supported Pt− Ni and Pt− Co alloy catalysts, J. Phys. Chem. B 106 (2002) 4181-4191.
[80] L. Deng, M. Zhou, C. Liu, L. Liu, C. Liu, S. Dong, Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells, Talanta. 81 (2010) 444-448.
[81] Y. Zhang, Y. Hu, S. Li, J. Sun, B. Hou, Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell, J. Power Sources. 196 (2011) 9284-9289.
[82] W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, Pt− Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells, J. Phys. Chem. B 110 (2006) 15353-15358.
[83] T. Matsumoto, T. Komatsu, H. Nakano, K. Arai, Y. Nagashima, E. Yoo, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catal. Today. 90 (2004) 277-281.
[84] Y. Yan, X. Wang, W. Li, Z. Chen, M.M.J.E.T. Waje, Characterization of support corrosion in PEM fuel cell: improved durability of carbon nanotube based electrode, ECS Trans. 1 (2006) 33-40.
[85] W. Zhu, J. Zheng, R. Liang, B. Wang, C. Zhang, G. Au, E. Plichta, Durability study on SWNT/nanofiber buckypaper catalyst support for PEMFCs, J. Electrochem. Soc. 156 (2009) B1099-B1105.
[86] H. Wang, Z. Wu, A. Plaseied, P. Jenkins, L. Simpson, C. Engtrakul, Z. Ren, Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells, J. Power Sources. 196 (2011) 7465-7469.
[87] S. Cheng, H. Liu, B.E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Technol. 40 (2006) 364-369.
[88] E. HaoYu, S. Cheng, K. Scott, B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts, J. Power Sources. 171 (2007) 275-281.
[89] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Commun. 7 (2005) 1405-1410.
[90] Y. Yuan, B. Zhao, Y. Jeon, S. Zhong, S. Zhou, S. Kim, Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells, Bioresour. Technol. 102 (2011) 5849-5854.
[91] M. Lu, S. Kharkwal, H.Y. Ng, S.F.Y. Li, Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells, Biosens. Bioelectron. 26 (2011) 4728-4732.
[92] M. Ghasemi, M. Ismail, S.K. Kamarudin, K. Saeedfar, W.R.W. Daud, S.H. Hassan, L.Y. Heng, J. Alam, S.-E. Oh, Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells, Appl. Energ. 102 (2013) 1050-1056.
[93] M. Lu, L. Guo, S. Kharkwal, H.Y. Ng, S.F.Y. Li, Manganese–polypyrrole–carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells, J. Power Sources. 221 (2013) 381-386.
[94] D. Zhu, D. B. Wang, T. S. Song, T. Guo, P. Ouyang, P. Wei, J. Xie, Effect of carbon nanotube modified cathode by electrophoretic deposition method on the performance of sediment microbial fuel cells, Biotechnol. Lett. 37 (2015) 101-107.
[95] M. Ghasemi, W.R.W. Daud, S.H. Hassan, T. Jafary, M. Rahimnejad, A. Ahmad, M.H.J.I.J.O.H.E. Yazdi, Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell, Int. J. Hydrogen Energ. 41 (2016) 4872-4878.
[96] Y.R. He, F. Du, Y.X. Huang, L.M. Dai, W.W. Li, H.Q. Yu, Preparation of microvillus-like nitrogen-doped carbon nanotubes as the cathode of a microbial fuel cell, J. Mater. Chem. A Mater 4 (2016) 1632-1636.