Microbial Production of Ethanol

$20.00

Microbial Production of Ethanol

Khush Bakhat Alia, Ijaz Rasul, Farrukh Azeem, Sabir Hussain, Muhammad Hussnain Siddique, Saima Muzammil, Muhammad Riaz, Amna Bari, Sehrish Liaqat, Habibullah Nadeem

With the increase in population, the demand for fuel from renewable resources is increasing as the sources of fossil fuel are exhausting. In this perspective production of biofuels gained importance and now biofuels are obtained by the fermentation of sugarcane and starch-based cereals and lignocellulosic materials including wheat straws, woodchips, agricultural and forest residues, etc. As these sources have certain limitations attention has been shifted towards the use of algae as a feedstock for biofuel. The conversion of these feedstocks into ethanol with the help of microorganisms is in consideration to meet the demand for fuel from renewable resources.

Keywords
Biofuel, Bioethanol, Lignocellulosic Biomass, Renewable Energy

Published online 2/21/2019, 28 pages

Citation: Khush Bakhat Alia, Ijaz Rasul, Farrukh Azeem, Sabir Hussain, Muhammad Hussnain Siddique, Saima Muzammil, Muhammad Riaz, Amna Bari, Sehrish Liaqat, Habibullah Nadeem, Microbial Production of Ethanol, Materials Research Foundations, Vol. 46, pp 307-334, 2019

DOI: http://dx.doi.org/10.21741/9781644900116-12

Part of the book on Microbial Fuel Cells

References
[1] L. Brennan, P. Owende, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev. 14 (2010) 557–577. https://doi.org/10.1016/j.rser.2009.10.009
[2] R. Bibi, Z. Ahmad, M. Imran, S. Hussain, A. Ditta, S. Mahmood, A. Khalid, Algal bioethanol production technology: a trend towards sustainable development, Renew. Sustain. Energy Rev. 71 (2017) 976–985. https://doi.org/10.1016/j.rser.2016.12.126
[3] T.L. Bezerra, A.J. Ragauskas, A review of sugarcane bagasse for second‐generation bioethanol and biopower production, Biofuels, Bioprod. Biorefining. 10 (2016) 634–647. https://doi.org/10.1002/bbb.1662
[4] T.L. da Silva, P.C. Passarinho, R. Galriça, A. Zenóglio, P. Armshaw, J.T. Pembroke, C. Sheahan, A. Reis, F. Gírio, Evaluation of the ethanol tolerance for wild and mutant Synechocystis strains by flow cytometry, Biotechnol. Reports. 17 (2018) 137–147. https://doi.org/10.1016/j.btre.2018.02.005
[5] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: a review, Renew. Sustain. Energy Rev. 14 (2010) 217–232. https://doi.org/10.1016/j.rser.2009.07.020
[6] C. Weber, A. Farwick, F. Benisch, D. Brat, H. Dietz, T. Subtil, E. Boles, Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels, Appl. Microbiol. Biotechnol. 87 (2010) 1303–1315. https://doi.org/10.1007/s00253-010-2707-z
[7] R.A. Lee, J.-M. Lavoie, From first-to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity, Anim. Front. 3 (2013) 6–11. https://doi.org/10.2527/af.2013-0010
[8] E.-M. Aro, From first generation biofuels to advanced solar biofuels, Ambio. 45 (2016) 24–31. https://doi.org/10.1007/s13280-015-0730-0
[9] H.S. Toogood, N.S. Scrutton, Retooling microorganisms for the fermentative production of alcohols, Curr. Opin. Biotechnol. 50 (2018) 1–10. https://doi.org/10.1016/j.copbio.2017.08.010
[10] M. V Rodionova, R.S. Poudyal, I. Tiwari, R.A. Voloshin, S.K. Zharmukhamedov, H.G. Nam, B.K. Zayadan, B.D. Bruce, H.J.M. Hou, S.I. Allakhverdiev, Biofuel production: challenges and opportunities, Int. J. Hyd. Energy. 42 (2017) 8450–8461. https://doi.org/10.1016/j.ijhydene.2016.11.125
[11] C.-Y. Chen, X.-Q. Zhao, H.-W. Yen, S.-H. Ho, C.-L. Cheng, D.-J. Lee, F.-W. Bai, J.-S. Chang, Microalgae-based carbohydrates for biofuel production, Biochem. Eng. J. 78 (2013) 1–10. https://doi.org/10.1016/j.bej.2013.03.006
[12] M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, S. Patil, Bioethanol production: feedstock and current technologies, J. Environ. Chem. Eng. 2 (2014) 573–584. https://doi.org/10.1016/j.jece.2013.10.013
[13] H. Sakuragi, K. Kuroda, M. Ueda, Molecular breeding of advanced microorganisms for biofuel production, Biomed Res. Int. 2011 (2011).
[14] C.-C. Fu, T.-C. Hung, J.-Y. Chen, C.-H. Su, W.-T. Wu, Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction, Bioresour. Technol. 101 (2010) 8750–8754. https://doi.org/10.1016/j.biortech.2010.06.100
[15] A.R. Sirajunnisa, D. Surendhiran, Algae–A quintessential and positive resource of bioethanol production: A comprehensive review, Renew. Sustain. Energy Rev. 66 (2016) 248–267. https://doi.org/10.1016/j.rser.2016.07.024
[16] M. Rastogi, S. Shrivastava, Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes, Renew. Sustain. Energy Rev. 80 (2017) 330–340. https://doi.org/10.1016/j.rser.2017.05.225
[17] H.B. Aditiya, T.M.I. Mahlia, W.T. Chong, H. Nur, A.H. Sebayang, Second generation bioethanol production: A critical review, Renew. Sustain. Energy Rev. 66 (2016) 631–653. https://doi.org/10.1016/j.rser.2016.07.015
[18] P. Singh, A. Suman, P. Tiwari, N. Arya, A. Gaur, A.K. Shrivastava, Biological pretreatment of sugarcane trash for its conversion to fermentable sugars, World J. Microbiol. Biotechnol. 24 (2008) 667–673. https://doi.org/10.1007/s11274-007-9522-4
[19] C. Wan, Y. Li, Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production, Bioresour. Technol. 101 (2010) 6398–6403. https://doi.org/10.1016/j.biortech.2010.03.070
[20] C. Wan, Y. Li, Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility, Enzyme Microb. Technol. 47 (2010) 31–36. https://doi.org/10.1016/j.enzmictec.2010.04.001
[21] H. Yu, G. Guo, X. Zhang, K. Yan, C. Xu, The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods, Bioresour. Technol. 100 (2009) 5170–5175. https://doi.org/10.1016/j.biortech.2009.05.049
[22] X. Yang, Y. Zeng, F. Ma, X. Zhang, H. Yu, Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi, Bioresour. Technol. 101 (2010) 5475–5479. https://doi.org/10.1016/j.biortech.2010.01.129
[23] X. Yang, F. Ma, Y. Zeng, H. Yu, C. Xu, X. Zhang, Structure alteration of lignin in corn stover degraded by white-rot fungus Irpex lacteus CD2, Int. Biodeterior. Biodegradation. 64 (2010) 119–123. https://doi.org/10.1016/j.ibiod.2009.12.001
[24] S. Kuhar, L.M. Nair, R.C. Kuhad, Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol, Can. J. Microbiol. 54 (2008) 305–313. https://doi.org/10.1139/W08-003
[25] J.S. Bak, J.K. Ko, I. Choi, Y. Park, J. Seo, K.H. Kim, Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw, Biotechnol. Bioeng. 104 (2009) 471–482. https://doi.org/10.1002/bit.22423
[26] J. Shi, M.S. Chinn, R.R. Sharma-Shivappa, Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium, Bioresour. Technol. 99 (2008) 6556–6564. https://doi.org/10.1016/j.biortech.2007.11.069
[27] C. Lu, H. Wang, Y. Luo, L. Guo, An efficient system for pre-delignification of gramineous biofuel feedstock in vitro: Application of a laccase from Pycnoporus sanguineus H275, Process Biochem. 45 (2010) 1141–1147. https://doi.org/10.1016/j.procbio.2010.04.010
[28] L. Li, X. Li, W. Tang, J. Zhao, Y. Qu, Screening of a fungus capable of powerful and selective delignification on wheat straw, Lett. Appl. Microbiol. 47 (2008) 415–420. https://doi.org/10.1111/j.1472-765X.2008.02447.x
[29] S.A. Jambo, R. Abdulla, S.H.M. Azhar, H. Marbawi, J.A. Gansau, P. Ravindra, A review on third generation bioethanol feedstock, Renew. Sustain. Energy Rev. 65 (2016) 756–769. https://doi.org/10.1016/j.rser.2016.07.064
[30] M. Koller, A. Salerno, P. Tuffner, M. Koinigg, H. Böchzelt, S. Schober, S. Pieber, H. Schnitzer, M. Mittelbach, G. Braunegg, Characteristics and potential of micro algal cultivation strategies: a review, J. Clean. Prod. 37 (2012) 377–388. https://doi.org/10.1016/j.jclepro.2012.07.044
[31] J. Singh, S. Gu, Commercialization potential of microalgae for biofuels production, Renew. Sustain. Energy Rev. 14 (2010) 2596–2610. https://doi.org/10.1016/j.rser.2010.06.014
[32] S.-H. Ho, X. Ye, T. Hasunuma, J.-S. Chang, A. Kondo, Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review, Biotechnol. Adv. 32 (2014) 1448–1459. https://doi.org/10.1016/j.biotechadv.2014.09.002
[33] K. Li, S. Liu, X. Liu, An overview of algae bioethanol production, Int. J. Energy Res. 38 (2014) 965–977. https://doi.org/10.1002/er.3164
[34] R. Harun, W.S.Y. Jason, T. Cherrington, M.K. Danquah, Exploring alkaline pre-treatment of microalgal biomass for bioethanol production, Appl. Energy. 88 (2011) 3464–3467. https://doi.org/10.1016/j.apenergy.2010.10.048
[35] S.P. Choi, M.T. Nguyen, S.J. Sim, Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production, Bioresour. Technol. 101 (2010) 5330–5336. https://doi.org/10.1016/j.biortech.2010.02.026
[36] Y. Cho, H. Kim, S.-K. Kim, Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast, Bioprocess Biosyst. Eng. 36 (2013) 713–719. https://doi.org/10.1007/s00449-013-0895-5
[37] M.G. Borines, R.L. de Leon, J.L. Cuello, Bioethanol production from the macroalgae Sargassum spp., Bioresour. Technol. 138 (2013) 22–29. https://doi.org/10.1016/j.biortech.2013.03.108
[38] M.D.N. Meinita, J.-Y. Kang, G.-T. Jeong, H.M. Koo, S.M. Park, Y.-K. Hong, Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii), J. Appl. Phycol. 24 (2012) 857–862. https://doi.org/10.1007/s10811-011-9705-0
[39] J.-H. Park, J.-Y. Hong, H.C. Jang, S.G. Oh, S.-H. Kim, J.-J. Yoon, Y.J. Kim, Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation, Bioresour. Technol. 108 (2012) 83–88. https://doi.org/10.1016/j.biortech.2011.12.065
[40] N.-J. Kim, H. Li, K. Jung, H.N. Chang, P.C. Lee, Ethanol production from marine algal hydrolysates using Escherichia coli KO11, Bioresour. Technol. 102 (2011) 7466–7469. https://doi.org/10.1016/j.biortech.2011.04.071
[41] P. Binod, K.U. Janu, R. Sindhu, A. Pandey, Hydrolysis of lignocellulosic biomass for bioethanol production, in: Biofuels, Elsevier, 2011: pp. 229–250. https://doi.org/10.1016/B978-0-12-385099-7.00010-3
[42] M. Matsumoto, H. Yokouchi, N. Suzuki, H. Ohata, T. Matsunaga, Saccharification of marine microalgae using marine bacteria for ethanol production, Appl. Biochem. Biotechnol. 105 (2003) 247–254. https://doi.org/10.1385/ABAB:105:1-3:247
[43] F. Talebnia, D. Karakashev, I. Angelidaki, Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation, Bioresour. Technol. 101 (2010) 4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080
[44] M.S. Sulfahri, E. Sunarto, M.Y. Irvansyah, R.S. Utami, S. Mangkoedihardjo, Ethanol production from algae Spirogyra with fermentation by Zymomonas mobilis and Saccharomyces cerevisiae, J Basic Appl Sci Res. 1 (2011) 589–593.