Conducting Polymer-Based Microbial Fuel Cells

$20.00

Conducting Polymer-Based Microbial Fuel Cells

Ruchira Rudra, Prasanta Pattanayak, Patit Paban Kundu

Advance technology is always incisive to alleviate the fossil fuel crisis in an eco-friendly way. A microbial fuel cell is such a sustainable, green technology that can facilitate bio-electrochemical conversion. Conducting polymers have become promising materials for high conductivity, catalytic behaviour, and excellent electrochemical activity and thus have become one of the utmost demanding materials for application in a microbial fuel cell. They have been highly recommended to modify electrodes, separators due to increased performance in terms of high conductivity, durability, power density in MFC. In this chapter, the utilization of available conducting polymer-based materials along with modification in MFC is introduced in details. Additional focus is given to future research aspirations with probable directions for future progress in this area.

Keywords
Conducting Polymer, Microbial Fuel Cell, Electrochemistry, Cathode and Anode Catalyst, Oxygen Reduction Reaction

Published online 2/21/2019, 14 pages

DOI: http://dx.doi.org/10.21741/9781644900079-8

Part of the book on Enzymatic Fuel Cells

References
[1] J. Wang, J. Wang, Z. Kong, K. Lv, C. Teng, Y. Zhu, Conducting-polymer-based materials for electrochemical energy conversion and storage, Adv. Mater. 1703044 (2017) 1-11.
[2] H. Wang, J. Lin, Z. Xiang Shen, Polyaniline (PANI) based electrode materials for energy storage and conversion, J. Sci. Adv. Mat. Devices. 1 (2016) 225-255.
[3] N. Mokhtarian, M. Ghasemi, W. R.W. Daud, M. Ismail, G. Najafpour, J. Alam, Improvement of microbial fuel cell performance by using Nafion polyaniline composite membranes as a separator, J. Fuel Cell Sci. Technol. 10 (2013) 041008.
[4] K. B. Liew, W.R.W. Daud, M. Ghasemi, J.X. Leong, S.S. Lim, M. Ismail, Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review, Int. J. Hydrogen Energ. 39 (2014) 4870 -4883.
[5] J. Li, W. Yang, B. Zhang, D. Ye, X. Zhu, Q. Liao, Electricity from microbial fuel cells, in: Q. Liao, J.-S. Chang, C. Herrmann, A. Xia (Eds.), Bioreactors for Microbial Biomass and Energy Conversion, 2017, pp. 391-434.
[6] Z.H. Liao, J.Z. Sun, D.Z. Sun, R.W. Si, Y.C. Yong , Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells, Bioresour. Technol. 192 (2015) 831-834.
[7] J. Hou, Z. Liu, Y. Li, Polyaniline modified stainless steel fiber felt for high-performance microbial fuel cell anodes, J. Clean Energy Technol. 3 (2015) 165-169.
[8] H.F. Cui, L. Du, P.B. Guo, B. Zhu, J.H.T. Luong, Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode, J. Power Sourc. 283 (2015) 46–53.
[9] S. Khilari, S. Pandit, J.L. Varanasi, D. Das, D. Pradhan, Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell, ACS Appl. Mater. Interf. 7 (2015) 20657–20666.
[10] D. Hidalgo, T. Tommasi, S. Bocchini, A. Chiolerio, A. Chiodoni, I. Mazzarino, B. Ruggeri, Surface modification of commercial carbon felt used as anode for microbial fuel cells, Energy, 99 (2016) 193-201.
[11] X. Liu, W. Wu, Z. Gu, Poly(3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell, J. Power Sourc. 277 (2015) 110-115.
[12] L. Huang, X. Li, Y. Ren, X. Wang, In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell, Int. J. Hydrogen Energ. 41 (2016) 11369-11389.
[13] X. Tang, H. Li, Z. Du, W. Wang, H.Y. Ng, Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells, RSC Adv. 5 (2015) 50968-50974.
[14] H. Yuan, L. Deng, Y. Chen, Y. Yuan, MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells, Electrochim. Acta 196 (2016) 280-285.
[15] M. Mashkour, M. Rahimnejad, M. Mashkour, Bacterial cellulose-polyaniline nano-biocomposite: a porous media hydrogel bioanode enhancing the performance of microbial fuel cell, J. Power Sourc. 325 (2016) 322-328.
[16] L. Zou, Y. Qiao, C. Zhong, C. M. Li, Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells, Electrochim. Acta. 229 (2017) 31-38.
[17] H.Y. Jung, S.H. Roh, Carbon nanofiber/polypyrrole nanocomposite as anode material in microbial fuel cells, J. Nanosci. Nanotechnol. 17 (2017) 5830-5833.
[18] P. Pérez-Rodríguez, V.M. Ovando-Medina, S.Y. Martínez-Amador, J.A. Rodríguez-de la Garza, Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells, Biotechnol. Bioprocess Eng. 21 (2016) 305-313.
[19] K. Pu, Q. Ma, W. Cai, Q. Chen, Y. Wang, F. Li, Polypyrrole modified stainless steel as high performance anode of microbial fuel cell, Biochem. Eng. J. 132 (2018) 255-261.
[20] G. Wu, H. Bao, Z. Xia, B. Yang, L. Lei, Z. Li, C. Liu, Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells, J. Power Sourc. 384 (2018) 86-92.
[21] N. Zhao, Z. Ma, H. Song, D. Wang, Y. Xie, Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells, Int. J. Hydrog. Energ. 43 (2018) 17867-17872.
[22] J.M. Sonawane, S. Al-Saadi, R.K.S. Raman, P.C. Ghosh, S.B. Adeloju, Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells, Electrochim. Acta. 268 (2018) 484-493.
[23] P. Mishra, R. Jain, Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells, Int. J. Hydrog. Energ. 41 (2016) 22394-22405.
[24] M. Lu, L. Guo, S. Kharkwal, H.Y. Ng, S.F.Y. Li, Manganese–polypyrrole–carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells, J. Power Sources, 221 (2013) 381-386.
[25] Y. Yuan, S. Zhou, L. Zhuang, Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells, J. Power Sources, 195 (2010) 3490-3493.
[26] H. Cui, L. Du, P. Guo, B. Zhu, J.H. Luong, Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode, J. Power Sources, 283 (2015) 46-53.
[27] F. Papiya, P. Pattanayak, P. Kumar, V. Kumar, P.P. Kundu, Development of highly efficient bimetallic nanocomposite cathode catalyst, composed of Ni: Co supported sulfonated polyaniline for application in microbial fuel cells, Electrochim. Acta. 282 (2018) 931-945.
[28] M. Ghasemi, W.R.W. Daud, S.H.A. Hassan, T. Jafary, M. Rahimnejad, A. Ahmad, M.H. Yazdi, Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell, Int. J. Hydrog. Energ. 41 (2016) 4872-4878.
[29] Y. Yuan, J. Ahmed, S. Kim, Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells, J. Power Sources, 196 (2011) 1103-1106.
[30] S.A. Ansari, N. Parveen, T.H. Han, M.O. Ansari, M.H. Cho, Fibrous polyaniline@ manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells, Phys. Chem. Chem. Phys. 18 (2016) 9053-9060.
[31] S. Khilari, S. Pandit, D. Das, D. Pradhan, Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells, Biosens. Bioelectron. 54 (2014) 534-540.
[32] C. Esmaeili, M. Ghasemi, L.Y. Heng, S.H.A. Hassan, M.M. Abdi, W.R.W. Daud, H. Ilbeygi, A.F. Ismail, Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells, Carbohydr. Polym. 114 (2014) 253-259.
[33] C.J. Kirubaharan, D.J. Yoo, A.R. Kim, Graphene/poly(3, 4-ethylenedioxythiophene)/Fe3O4 nanocomposite–An efficient oxygen reduction catalyst for the continuous electricity production from wastewater treatment microbial fuel cells, Int. J. Hydrog. Energ. 41 (2016) 13208-13219.
[34] D. Zhong, X. Liao, Y. Liu, N. Zhong, Y. Xu, Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode, Bioresour. Technol. 258 (2018) 125-134.